Assignment 3, Due Thursday Feb. 11

For the following exercises, use the existence and uniqueness of prime factorization of natural numbers, Stillwell, section 1.6

1. Show that $\sqrt{6}$ is irrational, that is, there are no natural numbers m, n such that $6 n^{2}=m^{2}$.
2. Show that $\sqrt{12}$ is irrational, that is, there are no natural numbers m, n such that $12 n^{2}=m^{2}$.
3. Make a conjecture about exactly which natural numbers have irrational square roots, in terms of the prime factorization of the natural number.
4. Prove your conjecture.
5. Show that $\sqrt{3} \sqrt{3}$ is irrational, that is, there are no natural numbers m, n such that $3 n^{3}=m^{3}$.
6. Show that $\log _{10}(2)$ is irrational, that is, there are no natural numbers n and m such that $2=10^{m / n}$.
