Mathematics 41 Midterm Exam II - F. Goodman October, 1997
 Version 1

1. Find a 2 nd order linear ordinary differential equation whose general solution is

$$
c_{1} e^{3 t}+c_{2} e^{-2 t}+3 t
$$

2. Solve the initial value problem

$$
\begin{aligned}
& y^{\prime \prime}-6 y^{\prime}+10 y=\sin (t) \\
& y(0)=\frac{1}{39}, \quad y^{\prime}(0)=\frac{3}{39}
\end{aligned}
$$

Remark: It takes a number of steps to work this out. Please work the problem out in stages and make clear what you are aiming to accomplish at each stage.
3.
(a) What is the Wronskian of a pair of functions?
(b) Consider a second order homogeneous linear differential equation (with continuous coefficients)

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 .
$$

What is meant by a fundamental pair of solutions to this equation? Give some equivalent conditions for a pair of solutions to be a fundamental family.

