Mathematics 41 Midterm Exam I – F. Goodman September, 1997 Version 1

1. Solve the differential equation

$$(x^{2} + y) dx + (x + e^{y}) dy = 0.$$

2. Solve the differential equation

$$(e^x + 1) \, dy = (y - ye^x) \, dx.$$

3. Solve the differential equation

$$y' = \frac{x^2 - 1}{y^2 + 1}.$$

4. (a) What does it mean for a function $\phi(t)$ to be a solution of a first order ordinary differential equation

$$y' = f(t, y)?$$

(b) What can you say about the existence and uniqueness of solutions to the linear first order differential equation

$$y' = f(t) y + g(t)$$

with initial condition $y(t_0) = y_0$?

5. Solve the differential equation

$$y' = \frac{y^3}{1 - 2xy^2}.$$

Little table of integrals:

$$\int \frac{1}{1+e^x} dx = \int \frac{1+e^x}{1+e^x} dx - \int \frac{e^x}{1+e^x} dx = x - \ln(1+e^x) + c$$