# Mathematics 41 Midterm Exam I - F. Goodman <br> September, 1997 <br> Version 1 

1. Solve the differential equation

$$
\left(x^{2}+y\right) d x+\left(x+e^{y}\right) d y=0
$$

2. Solve the differential equation

$$
\left(e^{x}+1\right) d y=\left(y-y e^{x}\right) d x
$$

3. Solve the differential equation

$$
y^{\prime}=\frac{x^{2}-1}{y^{2}+1} .
$$

4. (a) What does it mean for a function $\phi(t)$ to be a solution of a first order ordinary differential equation

$$
y^{\prime}=f(t, y) ?
$$

(b) What can you say about the existence and uniqueness of solutions to the linear first order differential equation

$$
y^{\prime}=f(t) y+g(t)
$$

with initial condition $y\left(t_{0}\right)=y_{0}$ ?
5. Solve the differential equation

$$
y^{\prime}=\frac{y^{3}}{1-2 x y^{2}}
$$

Little table of integrals:

$$
\int \frac{1}{1+e^{x}} d x=\int \frac{1+e^{x}}{1+e^{x}} d x-\int \frac{e^{x}}{1+e^{x}} d x=x-\ln \left(1+e^{x}\right)+c
$$

