Section 4.7, Exercises 11, 12, 28.
Section 4.9, Exercises 1, 5, 11, 32.
Section 5.1, Exercises 9 and 10*. (Here you can use Mathematica. I have made a guide for you, with the needed commands programmed for you. Open the Mathematica notebook "integration-exercise.nb" available on the course website, read the description of the available commands, and examine the examples given. Then use this to carry out exercises 9 and 10.)

Exercises 12, 13 18*, 19, 20, 22.
Note for 18 and 19: As a guide, note that the answer for the similar exercise 17 would be as follows: If we take $n$ intervals, then $\Delta x_{j}=\Delta=15 / n$. We take $x_{j}^{*}$ to be the right endpoint of the $j$-th interval, so $x_{j}^{*}=1+j(15 / n)$. Since the function to be integrated is $f(x)=\sqrt[4]{x}$, the approximating sum would be

$$
(15 / n) \sum_{j=1}^{n} \sqrt[4]{1+j(15 / n)}
$$

and the area under the curve is

$$
\lim _{n \rightarrow \infty}\left((15 / n) \sum_{j=1}^{n} \sqrt[4]{1+j(15 / n)}\right)
$$

Section 5.2, Exercises 2 and 3. Here it might be best to write out the sum by hand, and to evaluate it using a pocket calculator.

Exercises 8, 10 For 10, also use Mathematica to compute the sum with $n=50$.

