Assignment 6

(1) Let F be a field and let V be a countably infinite dimensional vector space over F. Let $A = \operatorname{End}_F(V)$. Let I be the ideal of finite rank transformations,

$$I = \{T \in A : \dim_F(T(V)) < \infty\}.$$

- Let B = A/I and let $\pi : A \to B$ be the quotient map.
- (a) Show that B is a simple F-algebra.
- (b) Construct an infinite decreasing sequence of subspace of V,

$$V = V_0 \supset V_1 \supset V_2 \supset \dots$$

such that V_i/V_{i+1} is infinite dimensional for each *i*.

(c) Let

$$M_i = \{T \in A : T(V) \subseteq V_i\},\$$

and

 $N_i = \{T \in A : \dim_F(T(V_i)) < \infty\}.$

Show that $(\pi(M_i))_{i\geq 0}$ is an infinite, strictly decreasing sequence of right ideals in *B* and that $(\pi(N_i))_{i\geq 0}$ is an infinite, strictly increasing sequence of left ideals in *B*. Thus *B* is not right Artinian, and not left Noetherian. Conclude that *B* is not semisimple.

- (d) Conclude that B is also not left Artinian and not right Noetherian.
- (2) Let M be a left module over a ring R. Define the *socle* of M to be the span of all simple submodules of M. Denote the socle by soc(M).
 - (a) Show $\operatorname{soc}(M)$ is a semisimple submodule of M, that every semisimple submodule is contained in $\operatorname{soc}(M)$ and that M is semisimple if, and only if, $M = \operatorname{soc}(M)$.
 - (b) Show if M is non-zero and Artinian, then $soc(M) \neq (0)$.
 - (c) Show that if M is Artinian and $\varphi : M \to N$ is a module homomorphism that is injective on the socle of M, then φ is injective.
- (3) Define a partial order on idempotents in a ring R by $e \leq f$ if ef = fe = e. An idempotent is called *primitive* or *minimal* if it is minimal in this partial order.
 - (a) Show $e \leq f$ if, and only if, there is an idempotent e' such that f = e + e' and ee' = e'e = 0.
 - (b) Show that eRe is a ring with identity e. Show that $End_R(Re)$ is anti-isomorphic to eRe.
 - (c) Recall that in a semisimple ring R, every left ideal has the form Re for some idempotent e. Show that the following are equivalent for an idempotent in a semisimple ring.
 - (i) e is primitive.
 - (ii) Re is a minimal left ideal
 - (iii) eRe is a division ring.

- (4) A non-zero *R*-module *M* is said to be *indecomposable* if it is not a direct sum of proper submodules. Let *R* be the ring of 2-by-2 upper triangular matrices over a field *F*, and let *M* be the vector space F^2 regarded as a left *R*-module. Show that *M* is indecomposable but not simple as an *R*-module. Show that $\operatorname{End}_R(M)$ consists of scalar multiplications $x \mapsto \alpha x$ for $\alpha \in F$.
- (5) Let R be a ring and M a finitely generated semisimple left R-module. Prove that $\operatorname{End}_R(M)$ is a semisimple ring.
- (6) The radical of an R module M to be the intersection of all maximal proper submodules, and the radical of R is the radical of the R-module RR. The radical is a submodule and in particular the radical of R is a left ideal.
 - (a) Show that if $\varphi : M \to N$ is an *R*-module homomorphism, then $\varphi(\operatorname{rad}(M)) \subseteq \operatorname{rad}(N)$. In particular $\operatorname{End}_R(R)$ preserves the radical of $_RR$.
 - (b) Conclude that $rad(_RR)$ is a two-sided ideal of R.
 - (c) Conclude also that $rad(_RR)M \subseteq rad(M)$.