Assignment 5

R will always denote a unital ring. Modules are left modules, unless otherwise indicated.

- (1) Let X, A, B be R-modules and $\alpha : X \to A, \beta : X \to B$. Define $C' = (A \oplus B)/N$, where $N = \{(\alpha(x), -\beta(x)) : x \in X\}$. Define $\alpha' : B \to C'$ by $\alpha'(b) = (0, b) + N$, and $\beta' : A \to C$ by $\beta'(a) = (a, 0) + N$. Show that $\beta' \circ \alpha = \alpha' \circ \beta$. Discover and prove a universal property for the triple (α', β', C') relative to the fixed data (X, A, B, α, β) . (Hint: Consider $C'', \alpha'' : B \to C'', \beta'' : A \to C''$ such that $\beta'' \circ \alpha = \alpha'' \circ \beta$.) Show that if α is injective, then α' is injective.
- (2) Use the construction in question (1) to show that if an *R*-module *Q* has the property that every short exact sequence $0 \to Q \to B \to C \to 0$ splits, then *Q* is injective.
- (3) Invent and analyze an analogue of problem (1) with all the arrows reversed.
- (4) Use your solution to exercise (3) to give a new proof that a module P is projective if it has the property that every short exact sequence $0 \to A \to B \to P \to 0$ splits.
- (5) Recall that an *R*-module *N* is said to be flat if the functor $\underline{\quad} \otimes_R N$ is exact. Let $M = \bigoplus_j M_j$. Show that *M* is flat if, and only if, each M_j is flat. (You will use that for every *A*, we have a natural isomorphism $A \otimes M \cong \bigoplus_j (A \otimes M_j)$.) Observe that *R* is flat as an *R* module. Conclude that every free *R* module is flat and that every projective *R* module is flat.

1