Math 16, Homework 9

1. Use Newton's method to find the cube root of 17 to 3 digits accuracy.
2. Use Newton's method to solve the equation $e^{x}=x^{2}$ to 3 digits accuracy.
3. Graph the function $y=f(x)=x^{4}-7 x^{3}+5 x^{2}+2 x-13$, using first and second derivative information to find the intervals on which the function is increasing/decreasing and concave up/down. (You will need to find the local maxima and minima of $f^{\prime}(x)$ in order to obtain initial guesses for the zeroes of $f^{\prime}(x)$. Then use Newton's method to find the zeroes of $f^{\prime}(x)$ precisely.
4. Graph the function $y=f(x)=e^{x}\left(x^{3}+5 x-16\right)$. using first and second derivative information to find the intervals on which the function is increasing/decreasing and concave up/down.
5. Find the tangent line to $y=f(x)=e^{x}\left(x^{3}+5 x-16\right)$ at $x=1$.
6. Find a point $(a, f(a))$ on the graph of $y=f(x)=e^{x}\left(x^{3}+5 x-16\right)$ such that the tangent line to the graph at $(a, f(a))$ passes thru the point $(3,0)$. (There are two such points! Remember that Newton's method is a general equation solving method!)
7. Find the two points on the circle $x^{2}+y^{2}=1$ such that the tangent line to the circle at those points passes thru the point $(5,0)$.
