Math 16, Homework 3

- 1. Write out the truth tables for "A implies B" and for "B implies A" and observe that they are different. (The statement "B implies A" is called the *converse* of "A implies B".)
- 2. Write out the truth tables for "A implies B" and for "not(B) implies not(A)" and observe that they are the same! (The statement "not(B) implies not(A)" is called the *contrapositive* of "A implies B".)
- 3. Form the negation of each of the following sentences. Simplify until the result contains negations only of simple sentences.
 - (a) Tonight I will go to a restaurant for dinner or to a movie.
 - (b) Tonight I will go to a restaurant for dinner and to a movie.
 - (c) If today is Tuesday, I have missed a deadline.
 - (d) For all lines L, L has at least two points.
 - (e) For every line L and every plane \mathbb{P} , if L is not a subset of \mathbb{P} , then $L \cap \mathbb{P}$ has at most one point.
- 4. Same instructions as for the previous problem Watch out for implicit universal quantifiers.
 - (a) If x is a real number, then $\sqrt{x^2} = |x|$.
 - (b) If x is a natural number and x is not a perfect square, then \sqrt{x} is irrational.
 - (c) If n is a natural number, then there exists a natural number N such N > n.
 - (d) If L and M are distinct lines, then either L and M do not intersect, or their intersection contains exactly one point.
- 5. (a) Let $f(x) = \frac{x}{1+x}$. Let f^{*n} denote the *n*-fold composition of f; thus $f^{*1}(x) = f(x), f^{*2}(x) = f(f(x)), f^{*3}(x) = f(f(f(x)))$, and so forth. Show by induction that for all natural numbers $n, f^{*n}(x) = \frac{x}{1+nx}$.
 - (b) Let a be any positive number and define a sequence with initial value a and updating function f:

$$\begin{cases} a_1 = a\\ a_{n+1} = f(a_n). \end{cases}$$

Describe the behavior of the sequence a_n .

6. Let a be a positive number. Show by induction that for all natural numbers $n, (1+a)^n \ge 1 + na$.

7. Suppose that the amount y_n of drug present in the body after n daily doses satisfies the updating rule:

$$\begin{cases} x_1 = 500\\ x_n = 250 + .7 \ (1 + .01 \cos(\frac{2\pi n}{28})) \ x_{n-1} & \text{for } n \ge 2 \end{cases}$$

By comparing this sequence with that defined by

$$\begin{cases} y_1 = 500\\ y_n = 250 + .707 \ y_{n-1} & \text{for } n \ge 2, \end{cases}$$

find an *upper bound* for the sequence x_n , i.e., a number M such that $x_n \leq M$ for all natural numbers n. Hint: Show by induction that $x_n \leq y_n$ for all natural numbers n, and find an upper bound for the sequence y_n .

8. Let x_n be as in the previous exercise. Is it possible to find a *lower bound* for the numbers x_n , for $n \ge 50$, i.e. a number m such that $x_n \ge m$ for all natural numbers $n \ge 50$?