Homweork 3, Exercise 6. Let $a$ be a positive number. Show by induction that for all natural numbers $n$,

$$
(1+a)^{n} \geq 1+n a .
$$

Solution: Let $P(n)$ denote the statement

$$
(1+a)^{n} \geq 1+n a .
$$

We need to show that $P(n)$ is valid for all natural numbers $n$. There are two steps to this. First we show that $P(1)$ is valid, and secondly we show that if for some $n, P(n)$ is valid, then also $P(n+1)$ is valid.
$P(1)$ is the statement

$$
(1+a) \geq 1+a,
$$

which is evidently true.
So now assume $P(n)$ is valid for some particular value of $n$. Then

$$
\begin{aligned}
(1+a)^{n+1} & =(1+a)^{n}(1+a) \\
& \geq(1+n a)(1+a) \\
& =1+n a+a+n a^{2} \\
& >1+n a+a \\
& =1+(n+1) a,
\end{aligned}
$$

where the inequality in the second line results from the induction hypothesis and rules for inequalities, and the inequality in the fourth line just follows from $n a^{2}>0$. This string of inequalities shows that $P(n+1)$ is also valid.

This completes the proof by induction.

