Mathematics 90 Final Exam - F. Goodman December 1999

1. Show that given 52 integers, there exist two of them whose sum or difference is divisible by 100 .
2. (a) How many ways are there to distribute 3 identical oranges, 5 identical candy canes, and one lump of coal to 3 (distinguishable) holiday stockings?
(b) What if the candy canes are of five distinct flavors?
3. (a) Count the permutations of the multiset $\{2 a, 2 b, 2 c\}$.
(b) Count the circular permutations of the multiset $\{2 a, 2 b, 2 c\}$, using Polya-Burnside theory. That is, count the number of orbits of the cyclic group \mathbb{Z}_{6} acting on multiset permutations.
4. How many integer solutions are there to:
(a) $x_{1}+x_{2}+x_{3}+x_{4}=15, x_{i} \geq 0$?
(b) $x_{1}+x_{2}+x_{3}+x_{4} \leq 15, x_{i} \geq 0$?
(c) $x_{1}+x_{2}+x_{3}+x_{4}=15, x_{i} \geq 0, x_{2} \geq 2, x_{4} \leq 3$?
5. Give generating function models for each of the parts of problem 4 ; that is, replace 15 by a variable n, and write the generating function for the number of solutions to the equation or inequality.
6. (a) Give the generating function for distributions of r identitical rice krispies into 17 distiguishable rice krispy boxes. (This is the same as the generating function for solutions to $x_{1}+x_{2}+\cdots+x_{17}=r$.)
(b) Give the generating function for distributions of r identitical rice krispies into 17 indistiguishable rice krispy boxes. (This is the same as the generating function for solutions to $x_{1}+x_{2}+\cdots+x_{17}=r$, where the order of the x_{i} 's doesn't matter. Since the order doesn't matter, arrange the x_{i} 's in decreasing order. So you are actually counting partitions of r with no more than 17 parts!)
(c) Give the generating function for distributions of r identitical rice krispies into r indistiguishable rice krispy boxes. (Now there is no longer any restriction on the number of parts in the partitions.)

Remark: The generating function for partitions of n with parts in a particular subset S of the natural numbers is

$$
\prod_{j \in S} \frac{1}{1-x^{j}}
$$

in particular the generating function for all partitions is

$$
\prod_{j=1}^{\infty} \frac{1}{1-x^{j}} ;
$$

