## Mathematics 90 Final Exam – F. Goodman December 1999

- 1. Show that given 52 integers, there exist two of them whose sum or difference is divisible by 100.
- 2. (a) How many ways are there to distribute 3 identical oranges, 5 identical candy canes, and one lump of coal to 3 (distinguishable) holiday stockings?
  - (b) What if the candy canes are of five distinct flavors?
- **3.** (a) Count the permutations of the multiset  $\{2a, 2b, 2c\}$ .
  - (b) Count the circular permutations of the multiset  $\{2a, 2b, 2c\}$ , using Polya-Burnside theory. That is, count the number of orbits of the cyclic group  $\mathbb{Z}_6$  acting on multiset permutations.
- 4. How many integer solutions are there to:
  - (a)  $x_1 + x_2 + x_3 + x_4 = 15, x_i \ge 0$ ?
  - (b)  $x_1 + x_2 + x_3 + x_4 \le 15, x_i \ge 0$ ?
  - (c)  $x_1 + x_2 + x_3 + x_4 = 15$ ,  $x_i \ge 0$ ,  $x_2 \ge 2$ ,  $x_4 \le 3$ ?
- 5. Give generating function models for each of the parts of problem 4; that is, replace 15 by a variable n, and write the generating function for the number of solutions to the equation or inequality.
- 6. (a) Give the generating function for distributions of r identitical rice krispies into 17 distiguishable rice krispy boxes. (This is the same as the generating function for solutions to  $x_1 + x_2 + \cdots + x_{17} = r$ .)
  - (b) Give the generating function for distributions of r identitical rice krispies into 17 *indistiguishable* rice krispy boxes. (This is the same as the generating function for solutions to  $x_1 + x_2 + \cdots + x_{17} = r$ , where the order of the  $x_i$ 's doesn't matter. Since the order doesn't matter, arrange the  $x_i$ 's in decreasing order. So you are actually counting *partitions* of r with no more than 17 parts!)
  - (c) Give the generating function for distributions of r identitical rice krispies into r *indistiguishable* rice krispy boxes. (Now there is no longer any restriction on the number of parts in the partitions.)

Remark: The generating function for partitions of n with parts in a particular subset S of the natural numbers is

$$\prod_{j \in S} \frac{1}{1 - x^j}$$

in particular the generating function for all partitions is

$$\prod_{j=1}^{\infty} \frac{1}{1-x^j}$$