Mathematics 121 Midterm Exam - Fred Goodman
 April, 2006
 Version 1

Do all problems.
Responses will be judged for accuracy, clarity and coherence.

1. Show that any two bases of a finite dimensional vector space have the same cardinality.
2.

(a) Show that a linear transformation on a finite dimensional vector space V over a field K determines a finitely generated torsion $K[x]$-module structure on V.
(b) Show that two linear transformations are similar if, and only if, they determine isomorphic $K[x]-$ modules.
3. State, but do not prove, the theorem on the invariant factor decomposition of a finitely generated module over a principal ideal domain. (Note that the module is not assumed to ba a torsion module.)
4. Consider the matrix

$$
A=\left[\begin{array}{rrrrr}
2 & -4 & -12 & 17 & 12 \\
0 & -15 & 9 & 68 & 55 \\
0 & 0 & 1 & 0 & 0 \\
0 & -4 & 0 & 18 & 13 \\
0 & 0 & 3 & 0 & 2
\end{array}\right]
$$

The characteristic polynomial of A is $\chi_{A}(x)=(x-1)^{2}(x-2)^{3}$.
(a) Find the Jordan canonical form of A and find a matrix S in $\operatorname{Mat}_{5}(\mathbb{Q})$ such that $S^{-1} A S$ is in Jordan canonical form.
It is helpful to know that a basis of the solution space of $(A-E) v=0$ is

$$
\left\{\left[\begin{array}{r}
-36 \\
39 \\
-4 \\
0 \\
12
\end{array}\right],\left[\begin{array}{r}
0 \\
17 \\
0 \\
4 \\
0
\end{array}\right]\right\} \text { and a basis of the solution space of }(A-2 E) v=0 \text { is }\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right\} .
$$

(b) What are the elementary divisors and the invariant factors of A ?
(c) What is the minimal polynomial of A ?
(d) What is the rational canonical form of A ?

