$$
\text { "bookmt" - 2006/3/16 - 13:00 - page } 405-\# 419
$$

Proof. This is immediate, since $\mu_{T}(x)$ is the largest invariant factor of T, and $\chi_{T}(x)$ is the product of all of the invariant factors.

Let us make a few more remarks about the relation between the minimal polynomial and the characteristic polynomial. All of the invariant factors of T divide the minimal polynomial $\mu_{T}(x)$, and $\chi_{T}(x)$ is the product of all the invariant factors. It follows that $\chi_{T}(x)$ and $\mu_{T}(x)$ have the same irreducible factors, but with possibly different multiplicities. Since $\lambda \in K$ is a root of a polynomial exactly when $x-\lambda$ is an irreducible factor, we also have that $\chi_{T}(x)$ and $\mu_{T}(x)$ have the same roots, but with possibly different multiplicities. Finally, the characteristic polynomial and the minimal polynomial coincide precisely if V is a cyclic $K[x]$-module; i.e., the rational canonical form of T has only one block.

Of course, statements analogous to Corollary M.6.13, and of these remarks, hold for a matrix $A \in \operatorname{Mat}_{n}(K)$ in place of the linear transformation T.

The roots of the characteristic polynomial (or of the minimal polynomial) of $T \in \operatorname{End}_{K}(V)$ have an important characterization.

Definition M.6.14. We say that an nonzero vector $v \in V$ is an eigenvector of T with eigenvalue λ, if $T v=\lambda v$. Likewise, we say that a nonzero vector $v \in K^{n}$ is an eigenvector of $A \in \operatorname{Mat}_{n}(K)$ with eigenvalue λ if $A v=\lambda v$.

The words "eigenvector" and "eigenvalue" are half-translated German words. The German Eigenvektor and Eigenwert mean "characteristic vector" and "characteristic value."

Proposition M.6.15. Let $T \in \operatorname{End}_{K}(V)$. An element $\lambda \in K$ is a root of $\chi_{T}(x)$ if, and only if, T has an eigenvector in V with eigenvalue λ.

Proof. Exercise M.6.7

Exercises M. 6

M.6.1. Let $h(x) \in K[x]$ be a polynomial of one variable. Show that there is a polynomial $g(x, y) \in K[x, y]$ such that $h(x)-h(y)=(x-y) g(x, y)$.
M.6.2. Set $w_{j}=(x-T) f_{j}=x f_{j}-\sum_{i} a_{i, j} f_{i}$. Show that $\left\{w_{1}, \ldots, w_{n}\right\}$ is linearly independent over $K[x]$.

$$
\text { "bookmt" - 2006/3/16 - 13:00 - page } 406 \text { - \#420 }
$$

M.6.3. Verify the following assetions made in the text regarding the computation of the rational canonical form of T. Suppose that F is a free $K[x]$ module, $\Phi: F \longrightarrow V$ is a surjective $K[x]$-module homomorphism, $\left(y_{1}, \ldots, y_{n-s}, z_{1}, \ldots, z_{s}\right)$ is a basis of F, and

$$
\left(y_{1}, \ldots, y_{n-s}, a_{1}(x) z_{1}, \ldots, a_{s}(x) z_{s}\right)
$$

is a basis of $\operatorname{ker}(\Phi)$. Set $v_{j}=\Phi\left(z_{j}\right)$ for $1 \leq j \leq s$, and

$$
V_{j}=K[x] v_{j}=\operatorname{span}\left(\left\{p(T) v_{j}: p(x) \in K[x]\right\}\right) .
$$

(a) Show that $V=V_{1} \oplus \cdots \oplus V_{s}$.
(b) Let δ_{j} be the degree of $a_{j}(x)$. Show that $\left(v_{j}, T v_{j}, \ldots, T^{\delta_{j}-1} v_{j}\right)$ is a basis of V_{j}. and that the matrix of $T_{\mid V_{j}}$ with respect to this basis is the companion matrix of $a_{j}(x)$.
M.6.4. Let $A=\left[\begin{array}{rrrr}7 & 4 & 5 & 1 \\ -15 & -10 & -15 & -3 \\ 0 & 0 & 5 & 0 \\ 56 & 52 & 51 & 15\end{array}\right]$. Find the rational canonical
form of A and find an invertible matrix S such that $S^{-1} A S$ is in rational canonical form.
M.6.5. Show that χ_{A} is a similarity invariant of matrices. Conclude that for $T \in \operatorname{End}_{K}(V), \chi_{T}$ is well defined, and is a similarity invariant for linear transformations.
M.6.6. Since $\chi_{A}(x)$ is a similarity invariant, so are all of its coefficients. Show that the coefficient of x^{n-1} is the negative of the trace $\operatorname{tr}(A)$, namely the sum of the matrix entries on the main diagonal of A. Conclude that the trace is a similarity invariant.
M.6.7. Show that λ is a root of $\chi_{T}(x)$ if, and only if, T has an eigenvector in V with eigenvalue λ. Show that v is an eigenvector of T for some eigenvalue if, and only if, the one dimensional subspace $K v \subseteq V$ is invariant under T.

The next four exercises give an alternative proof of the Cayley-Hamilton theorem. Let $T \in \operatorname{End}_{K}(V)$, where V is n-dimensional. Assume that the field K contains all roots of $\chi_{T}(x)$; that is, $\chi_{T}(x)$ factors into linear factors in $K[x]$.
M.6.8. Let $V_{0} \subseteq V$ be any invariant subspace for T. Show that there is a linear operator \bar{T} on V / V_{0} defined by

$$
\bar{T}\left(v+V_{0}\right)=T(v)+V_{0}
$$

for all $v \in V$. Suppose that $\left(v_{1}, \ldots, v_{k}\right)$ is an ordered basis of V_{0}, and that

$$
\left(v_{k+1}+V_{0}, \ldots, v_{n}+V_{0}\right)
$$

is an ordered basis of V / V_{0}. Suppose, moreover, that the matrix of $T_{\mid V_{0}}$ with respect to $\left(v_{1}, \ldots, v_{k}\right)$ is A_{1} and the matrix of \bar{T} with respect to $\left(v_{k+1}+V_{0}, \ldots, v_{n}+V_{0}\right)$ is A_{2}. Show that $\left(v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{n}\right)$ is an orderd basis of V and that the matrix of T with respect to this basis has the form

$$
\left[\begin{array}{cc}
A_{1} & B \\
0 & A_{2}
\end{array}\right],
$$

where B is some $k-b y-(n-k)$ matrix.
M.6.9. Use the previous two exercises, and induction on n to conclude that V has some basis with respect to which the matrix of T is upper triangular; that means that all the entries below the main diagonal of the matrix are zero.
M.6.10. Suppose that A^{\prime} is the upper triangular matrix of T with respect to some basis of V. Denote the diagonal entries of A^{\prime} by $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$; this sequence may have repetitions. Show that $\chi_{T}(x)=\prod_{i}\left(x-\lambda_{i}\right)$.
M.6.11. Let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V with respect to which the matrix A^{\prime} of T is upper triangular, with diagonal entries $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Let $V_{0}=$ $\{0\}$ and $V_{k}=\operatorname{span}\left(\left\{v_{1}, \ldots, v_{k}\right\}\right)$ for $1 \leq k \leq n$. Show that $T-\lambda_{k}$ maps V_{k} into V_{k-1} for all $k, 1 \leq k \leq n$. Show by induction that

$$
\left(T-\lambda_{k}\right)\left(T-\lambda_{k+1}\right) \cdots\left(T-\lambda_{n}\right)
$$

maps V into V_{k-1} for all $k, 1 \leq k \leq n$. Note in particular that

$$
\left(T-\lambda_{1}\right) \cdots\left(T-\lambda_{n}\right)=0 .
$$

Using the previous exercise, conclude that $\chi_{T}(T)=0$, the characteristic polynomial of T, evaluated at T, gives the zero transformation.

Remark M.6.16. The previous four exercises show that $\chi_{T}(T)=0$, under the assumption that all roots of the characteristic polynomial lie in K. This restriction can be removed, as follows. First, the assertion $\chi_{T}(T)=0$ for $T \in \operatorname{End}_{K}(V)$ is equivalent to the assertion that $\chi_{A}(A)=0$ for $A \in \operatorname{Mat}_{n}(K)$. Let K be any field, and let $A \in \operatorname{Mat}_{n}(K)$. If F is any field with $F \supseteq K$ then A can be considered as an element of $\operatorname{Mat}_{n}(F)$. The characteristic polynomial of A is the same whether A is regarded as a matrix with entries in K or as a matrix with entries in F. Moreover, $\chi_{A}(A)$ is the same matrix, whether A is regarded as a matrix with entries in K or as a matrix with entries in F.

As is explained in Section 8.2, there exists a field $F \supseteq K$ such that all roots of $\chi_{A}(x)$ lie in F. It follows that $\chi_{A}(A)=0$.

