M.6. RATIONAL CANONICAL FORM

Proof. This is immediate, since $\mu_T(x)$ is the largest invariant factor of *T*, and $\chi_T(x)$ is the product of all of the invariant factors.

Let us make a few more remarks about the relation between the minimal polynomial and the characteristic polynomial. All of the invariant factors of *T* divide the minimal polynomial $\mu_T(x)$, and $\chi_T(x)$ is the product of all the invariant factors. It follows that $\chi_T(x)$ and $\mu_T(x)$ have the same irreducible factors, but with possibly different multiplicities. Since $\lambda \in K$ is a root of a polynomial exactly when $x - \lambda$ is an irreducible factor, we also have that $\chi_T(x)$ and $\mu_T(x)$ have the same roots, but with possibly different multiplicities. Finally, the characteristic polynomial and the minimal polynomial coincide precisely if *V* is a cyclic K[x]-module; i.e., the rational canonical form of *T* has only one block.

Of course, statements analogous to Corollary M.6.13, and of these remarks, hold for a matrix $A \in Mat_n(K)$ in place of the linear transformation T.

The roots of the characteristic polynomial (or of the minimal polynomial) of $T \in \text{End}_{K}(V)$ have an important characterization.

Definition M.6.14. We say that an *nonzero* vector $v \in V$ is an *eigenvector* of T with *eigenvalue* λ , if $Tv = \lambda v$. Likewise, we say that a nonzero vector $v \in K^n$ is an *eigenvector* of $A \in Mat_n(K)$ with *eigenvalue* λ if $Av = \lambda v$.

The words "eigenvector" and "eigenvalue" are half-translated German words. The German Eigenvector and Eigenwert mean "characteristic vector" and "characteristic value."

Proposition M.6.15. Let $T \in \text{End}_{K}(V)$. An element $\lambda \in K$ is a root of $\chi_{T}(x)$ if, and only if, T has an eigenvector in V with eigenvalue λ .

Proof. Exercise M.6.7

 \oplus

Exercises M.6

 \oplus

M.6.1. Let $h(x) \in K[x]$ be a polynomial of one variable. Show that there is a polynomial $g(x, y) \in K[x, y]$ such that h(x)-h(y) = (x-y)g(x, y).

M.6.2. Set $w_j = (x - T) f_j = x f_j - \sum_i a_{i,j} f_i$. Show that $\{w_1, \ldots, w_n\}$ is linearly independent over K[x].

405

⊕

⊕

M. MODULES

⊕

M.6.3. Verify the following assetions made in the text regarding the computation of the rational canonical form of *T*. Suppose that *F* is a free K[x] module, $\Phi : F \longrightarrow V$ is a surjective K[x]-module homomorphism, $(y_1, \ldots, y_{n-s}, z_1, \ldots, z_s)$ is a basis of *F*, and

$$(y_1, \ldots, y_{n-s}, a_1(x)z_1, \ldots, a_s(x)z_s)$$

is a basis of ker(Φ). Set $v_j = \Phi(z_j)$ for $1 \le j \le s$, and

$$V_j = K[x]v_j = \operatorname{span}(\{p(T)v_j : p(x) \in K[x]\}).$$

- (a) Show that $V = V_1 \oplus \cdots \oplus V_s$.
- (b) Let δ_j be the degree of $a_j(x)$. Show that $(v_j, Tv_j, \dots, T^{\delta_j 1}v_j)$ is a basis of V_j . and that the matrix of $T_{|V_j|}$ with respect to this basis is the companion matrix of $a_j(x)$.

M.6.4. Let
$$A = \begin{bmatrix} 7 & 4 & 5 & 1 \\ -15 & -10 & -15 & -3 \\ 0 & 0 & 5 & 0 \\ 56 & 52 & 51 & 15 \end{bmatrix}$$
. Find the rational canonical

form of A and find an invertible matrix S such that $S^{-1}AS$ is in rational canonical form.

M.6.5. Show that χ_A is a similarity invariant of matrices. Conclude that for $T \in \text{End}_K(V)$, χ_T is well defined, and is a similarity invariant for linear transformations.

M.6.6. Since $\chi_A(x)$ is a similarity invariant, so are all of its coefficients. Show that the coefficient of x^{n-1} is the negative of the *trace* tr(*A*), namely the sum of the matrix entries on the main diagonal of *A*. Conclude that the trace is a similarity invariant.

M.6.7. Show that λ is a root of $\chi_T(x)$ if, and only if, T has an eigenvector in V with eigenvalue λ . Show that v is an eigenvector of T for some eigenvalue if, and only if, the one dimensional subspace $Kv \subseteq V$ is invariant under T.

The next four exercises give an alternative proof of the Cayley-Hamilton theorem. Let $T \in \text{End}_K(V)$, where V is *n*-dimensional. Assume that the field K contains all roots of $\chi_T(x)$; that is, $\chi_T(x)$ factors into linear factors in K[x].

M.6.8. Let $V_0 \subseteq V$ be any invariant subspace for T. Show that there is a linear operator \overline{T} on V/V_0 defined by

$$\overline{T}(v+V_0) = T(v) + V_0$$

for all $v \in V$. Suppose that (v_1, \ldots, v_k) is an ordered basis of V_0 , and that

$$(v_{k+1} + V_0, \ldots, v_n + V_0)$$

406

 \oplus

M.6. RATIONAL CANONICAL FORM

is an ordered basis of V/V_0 . Suppose, moreover, that the matrix of $T_{|V_0}$ with respect to (v_1, \ldots, v_k) is A_1 and the matrix of \overline{T} with respect to $(v_{k+1} + V_0, \ldots, v_n + V_0)$ is A_2 . Show that $(v_1, \ldots, v_k, v_{k+1}, \ldots, v_n)$ is an orderd basis of V and that the matrix of T with respect to this basis has the form

$$\begin{bmatrix} A_1 & B \\ 0 & A_2 \end{bmatrix},$$

where B is some k-by-(n - k) matrix.

M.6.9. Use the previous two exercises, and induction on n to conclude that V has some basis with respect to which the matrix of T is *upper triangular*; that means that all the entries below the main diagonal of the matrix are zero.

M.6.10. Suppose that A' is the upper triangular matrix of T with respect to some basis of V. Denote the diagonal entries of A' by $(\lambda_1, \ldots, \lambda_n)$; this sequence may have repetitions. Show that $\chi_T(x) = \prod_i (x - \lambda_i)$.

M.6.11. Let (v_1, \ldots, v_n) be a basis of V with respect to which the matrix A' of T is upper triangular, with diagonal entries $(\lambda_1, \ldots, \lambda_n)$. Let $V_0 = \{0\}$ and $V_k = \text{span}(\{v_1, \ldots, v_k\})$ for $1 \le k \le n$. Show that $T - \lambda_k$ maps V_k into V_{k-1} for all $k, 1 \le k \le n$. Show by induction that

$$(T-\lambda_k)(T-\lambda_{k+1})\cdots(T-\lambda_n)$$

maps V into V_{k-1} for all $k, 1 \le k \le n$. Note in particular that

$$(T-\lambda_1)\cdots(T-\lambda_n)=0.$$

Using the previous exercise, conclude that $\chi_T(T) = 0$, the characteristic polynomial of *T*, evaluated at *T*, gives the zero transformation.

Remark M.6.16. The previous four exercises show that $\chi_T(T) = 0$, under the assumption that all roots of the characteristic polynomial lie in K. This restriction can be removed, as follows. First, the assertion $\chi_T(T) = 0$ for $T \in \text{End}_K(V)$ is equivalent to the assertion that $\chi_A(A) = 0$ for $A \in \text{Mat}_n(K)$. Let K be any field, and let $A \in \text{Mat}_n(K)$. If F is any field with $F \supseteq K$ then A can be considered as an element of $\text{Mat}_n(F)$. The characteristic polynomial of A is the same whether A is regarded as a matrix with entries in K or as a matrix with entries in F. Moreover, $\chi_A(A)$ is the same matrix, whether A is regarded as a matrix with entries in F.

As is explained in Section 8.2, there exists a field $F \supseteq K$ such that all roots of $\chi_A(x)$ lie in F. It follows that $\chi_A(A) = 0$.

407

⊕