M. MODULES

 \oplus

 \oplus

The periods $p_j^{n_{i,j}}$ of the direct summands in the decomposition described in Theorem M.5.13 are called the *elementary divisors* of M. They are determined up to multiplication by units.

Example M.5.14. Let

$$f(x) = x^5 - 9x^4 + 32x^3 - 56x^2 + 48x - 16$$

and

$$g(x) = x^{10} - 6x^9 + 16x^8 - 30x^7 + 46x^6 - 54x^5 + 52x^4 - 42x^3 + 25x^2 - 12x + 4.$$

Their irreducible factorizations in $\mathbb{Q}[x]$ are

$$f(x) = (x-2)^4(x-1)$$

and

$$g(x) = (x-2)^2(x-1)^2(x^2+1)^3$$
.

Let *M* denote the Q[x]-module $M = \mathbb{Q}[x]/(f) \oplus \mathbb{Q}[x]/(g)$. Then

$$M \cong \mathbb{Q}[x]/((x-2)^4) \oplus \mathbb{Q}[x]/((x-1))$$
$$\oplus \mathbb{Q}[x]/((x-2)^2) \oplus \mathbb{Q}[x]/((x-1)^2) \oplus \mathbb{Q}[x]/((x^2+1)^3)$$

The elementary divisors of M are $(x-2)^4$, $(x-2)^2$, $(x-1)^2$, (x-1), and $(x^2+1)^3$. Regrouping the direct summands gives:

$$M \cong \left(\mathbb{Q}[x]/((x-2)^4) \oplus \mathbb{Q}[x]/((x-1)^2) \oplus \mathbb{Q}[x]/((x^2+1)^3) \right)$$
$$\oplus \left(\mathbb{Q}[x]/((x-2)^2) \oplus \mathbb{Q}[x]/((x-1)) \right)$$
$$\cong \mathbb{Q}[x]/((x-2)^4(x-1)^2 \left(x^2 + 1 \right)^2) \oplus \mathbb{Q}[x]/((x-2)^2(x-1))$$

The invariant factors of *M* are $(x - 2)^4 (x - 1)^2 (x^2 + 1)^3$ and $(x - 2)^2 (x - 1)$.

Exercises M.5

M.5.1. Let *R* be an integral domain, *M* an *R*-module and *S* a subset of *R*. Show that ann(S) is an ideal of *R* and ann(S) = ann(RS).

M.5.2. Let *M* be a module over an integral domain *R*. Show that M/M_{tor} is torsion free

M.5.3. Let *M* be a module over an integral domain *R*. Suppose that $M = A \oplus B$, where *A* is a torsion submodule and *B* is free. Show that $A = M_{\text{tor.}}$

364

 \oplus

 \oplus

 \oplus

M.6. RATIONAL CANONICAL FORM

M.5.4. Let *R* be an integral domain. Let *B* be a maximal linearly independent subset of an *R*-module *M*. Show that *RB* is free and that M/RB is a torsion module.

M.5.5. Let R be an integral domain with a non-principal ideal J. Show that J is torsion free as an R-module, that any two distinct elements of J are linearly dependent over R, and that J is a not a free R-module.

M.5.6. Show that $M = \mathbb{Q}/\mathbb{Z}$ is a torsion \mathbb{Z} -module, that M is not finitely generated, and that $\operatorname{ann}(M) = \{0\}$.

M.5.7. Let R be a principal ideal domain. The purpose of this exercise is to give another proof of the uniqueness of the invariant factor decomposition for finitely generated torsion R-modules.

Let p be an irreducible of R.

- (a) Let *a* be a nonzero, nonunit element of *R* and consider M = R/(a). Show that for $k \ge 1$, $p^{k-1}M/p^kM \cong R/(p)$ if p^k divides *a* and $p^{k-1}M/p^kM = \{0\}$ otherwise.
- (b) Let M be a finitely generated torsion R-module, with a direct sum decomposition

$$M = A_1 \oplus A_2 \oplus \cdots \oplus A_s,$$

where

- for $i \ge 1$, $A_i \cong R/(a_i)$, and
- the ring elements a_i are nonzero and noninvertible, and a_i divides a_j for i ≥ j;

Show that for $k \ge 1$, $p^{k-1}M/p^kM \cong (R/(p))^{m_k(p)}$, where $m_k(p)$ is the number of a_i that are divisible by p^k . Conclude that the numers $m_k(p)$ depend only on M and not on the choice of the direct sum decomposition $M = A_1 \oplus A_2 \oplus \cdots \oplus A_s$.

(c) Show that the numbers $m_k(p)$, as p and k vary, determine s and also determine the ring elements a_i up to associates. Conclude that the invariant factor decomposition is unique.

M.5.8. Let *M* be a finitely generated torsion module over a PID *R*. Let *m* be a period of *M* with irreducible factorization $m = p_1^{m_1} \cdots p_s^{m_s}$. Show that for each *i* and for all $x \in M[p_i], p_i^{m_i} x = 0$.

M.6. Rational canonical form

In this section we apply the theory of finitely generated modules of a principal ideal domain to study the structure of a linear transformation of a finite dimensional vector space.

If T is a linear transformation of a finite dimensional vector space V over a field K, then V has a K[x]-module structure determined by

⊕

⊕