$$
\text { "bookmt" - 2006/3/4 - 18:43 - page } 364 \text { - \#378 }
$$

The periods $p_{j}^{n_{i, j}}$ of the direct summands in the decomposition described in Theorem M.5.13 are called the elementary divisors of M. They are determined up to multiplication by units.

Example M.5.14. Let

$$
f(x)=x^{5}-9 x^{4}+32 x^{3}-56 x^{2}+48 x-16
$$

and
$g(x)=x^{10}-6 x^{9}+16 x^{8}-30 x^{7}+46 x^{6}-54 x^{5}+52 x^{4}-42 x^{3}+25 x^{2}-12 x+4$.
Their irreducible factorizations in $\mathbb{Q}[x]$ are

$$
f(x)=(x-2)^{4}(x-1)
$$

and

$$
g(x)=(x-2)^{2}(x-1)^{2}\left(x^{2}+1\right)^{3}
$$

Let M denote the $Q[x]$-module $M=\mathbb{Q}[x] /(f) \oplus \mathbb{Q}[x] /(g)$. Then

$$
\begin{aligned}
M & \cong \mathbb{Q}[x] /\left((x-2)^{4}\right) \oplus \mathbb{Q}[x] /((x-1)) \\
& \oplus \mathbb{Q}[x] /\left((x-2)^{2}\right) \oplus \mathbb{Q}[x] /\left((x-1)^{2}\right) \oplus \mathbb{Q}[x] /\left(\left(x^{2}+1\right)^{3}\right)
\end{aligned}
$$

The elementary divisors of M are $(x-2)^{4},(x-2)^{2},(x-1)^{2},(x-1)$, and $\left(x^{2}+1\right)^{3}$. Regrouping the direct summands gives:

$$
\begin{aligned}
M & \cong\left(\mathbb{Q}[x] /\left((x-2)^{4}\right) \oplus \mathbb{Q}[x] /\left((x-1)^{2}\right) \oplus \mathbb{Q}[x] /\left(\left(x^{2}+1\right)^{3}\right)\right) \\
& \oplus\left(\mathbb{Q}[x] /\left((x-2)^{2}\right) \oplus \mathbb{Q}[x] /((x-1))\right) \\
& \cong \mathbb{Q}[x] /\left((x-2)^{4}(x-1)^{2}\left(x^{2}+1\right)^{2}\right) \oplus \mathbb{Q}[x] /\left((x-2)^{2}(x-1)\right) .
\end{aligned}
$$

The invariant factors of M are $(x-2)^{4}(x-1)^{2}\left(x^{2}+1\right)^{3}$ and $(x-2)^{2}(x-1)$.

Exercises M. 5

M.5.1. Let R be an integral domain, M an R-module and S a subset of R. Show that ann (S) is an ideal of R and $\operatorname{ann}(S)=\operatorname{ann}(R S)$.
M.5.2. Let M be a module over an integral domain R. Show that $M / M_{\text {tor }}$ is torsion free
M.5.3. Let M be a module over an integral domain R. Suppose that $M=$ $A \oplus B$, where A is a torsion submodule and B is free. Show that $A=M_{\text {tor }}$.
M.5.4. Let R be an integral domain. Let B be a maximal linearly independent subset of an R-module M. Show that $R B$ is free and that $M / R B$ is a torsion module.
M.5.5. Let R be an integral domain with a non-principal ideal J. Show that J is torsion free as an R-module, that any two distinct elements of J are linearly dependent over R, and that J is a not a free R-module.
M.5.6. Show that $M=\mathbb{Q} / \mathbb{Z}$ is a torsion \mathbb{Z}-module, that M is not finitely generated, and that ann $(M)=\{0\}$.
M.5.7. Let R be a principal ideal domain. The purpose of this exercise is to give another proof of the uniqueness of the invariant factor decomposition for finitely generated torsion R-modules.

Let p be an irreducible of R.
(a) Let a be a nonzero, nonunit element of R and consider $M=$ $R /(a)$. Show that for $k \geq 1, p^{k-1} M / p^{k} M \cong R /(p)$ if p^{k} divides a and $p^{k-1} M / p^{k} M=\{0\}$ otherwise.
(b) Let M be a finitely generated torsion R-module, with a direct sum decomposition

$$
M=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{s}
$$

where

- for $i \geq 1, A_{i} \cong R /\left(a_{i}\right)$, and
- the ring elements a_{i} are nonzero and noninvertible, and a_{i} divides a_{j} for $i \geq j$;
Show that for $k \geq 1, p^{k-1} M / p^{k} M \cong(R /(p))^{m_{k}(p)}$, where $m_{k}(p)$ is the number of a_{i} that are divisible by p^{k}. Conclude that the numers $m_{k}(p)$ depend only on M and not on the choice of the direct sum decomposition $M=A_{1} \oplus A_{2} \oplus \cdots \oplus A_{s}$.
(c) Show that the numbers $m_{k}(p)$, as p and k vary, determine s and also determine the ring elements a_{i} up to associates. Conclude that the invariant factor decomposition is unique.
M.5.8. Let M be a finitely generated torsion module over a PID R. Let m be a period of M with irreducible factorization $m=p_{1}^{m_{1}} \cdots p_{s}^{m_{s}}$. Show that for each i and for all $x \in M\left[p_{i}\right], p_{i}^{m_{i}} x=0$.

M.6. Rational canonical form

In this section we apply the theory of finitely generated modules of a principal ideal domain to study the structure of a linear transformation of a finite dimensional vector space.

If T is a linear transformation of a finite dimensional vector space V over a field K, then V has a $K[x]$-module structure determined by

