$$
\text { "bookmt" - 2006/2/23 - 11:06 - page } 366 \text { - \#380 }
$$

We can rewrite this as

$$
\begin{equation*}
\left[e_{1}, \ldots, e_{s}\right]=\left[f_{1}, \ldots, f_{n}\right] A, \tag{M.4.5}
\end{equation*}
$$

where A denotes the n-by- s matrix $A=\left(a_{i, j}\right)$. According to Proposition M.4.7, there exist invertible matrices $P \in \operatorname{Mat}_{n}(R)$ and $Q \in \operatorname{Mat}_{s}(R)$ such that $A^{\prime}=P A Q$ is diagonal,

$$
A^{\prime}=P A Q=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{s}\right)
$$

We will see below that all the d_{j} are necessarily nonzero. Again, according to Proposition M.4.7, P and Q can be chosen so that d_{i} divides d_{j} whenever $i \leq j$. We rewrite (M.4.5) as

$$
\begin{equation*}
\left[e_{1}, \ldots, e_{s}\right] Q=\left[f_{1}, \ldots, f_{n}\right] P^{-1} A^{\prime} \tag{M.4.6}
\end{equation*}
$$

According to Lemma M.4.11, if we define $\left\{v_{1}, \ldots, v_{n}\right\}$ by

$$
\left[v_{1}, \ldots, v_{n}\right]=\left[f_{1}, \ldots, f_{n}\right] P^{-1}
$$

and $\left\{w_{1}, \ldots, w_{s}\right\}$ by

$$
\left[w_{1}, \ldots, w_{s}\right]=\left[e_{1}, \ldots, e_{s}\right] Q
$$

then $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of F and $\left\{w_{1}, \ldots, w_{s}\right\}$ is a basis of N. By Equation (M.4.6), we have

$$
\left[w_{1}, \ldots, w_{s}\right]=\left[v_{1}, \ldots, v_{n}\right] A^{\prime}=\left[d_{1} v_{1}, \ldots, d_{s} v_{s}\right]
$$

In particular, d_{j} is nonzero for all j, since $\left\{d_{1} v_{1}, \ldots, d_{s} v_{s}\right\}$ is a basis of N.

Exercises M. 4

M.4.1. Let R be a commutative ring with identity element and let M be a module over R.
(a) Let A and B be matrices over R of size n-by- s and s-by- t respectively. Show that for $\left[v_{1}, \ldots, v_{n}\right] \in M^{n}$,

$$
\left[v_{1}, \ldots, v_{n}\right](A B)=\left(\left[v_{1}, \ldots, v_{n}\right] A\right) B
$$

(b) Show that if $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent subset of M, and $\left[v_{1}, \ldots, v_{n}\right] A=0$, then $A=0$.
M.4.2. Prove Lemma M.4.8
M.4.3 Let R denote the set of infinite-by-infinite, row- and columnfinite matrices with complex entries. That is, a matrix is in R if, and only if, each row and each column of the matrix has only finitely many nonzero entries. Show that R is a non-commutative ring with identity, and that $R \cong R \oplus R$ as R-modules.

In the remaining exercises, R denotes a principal ideal domain.
M.4.4. Let M be a a free module of rank n over R. Let N be a submodule of M. Suppose we know that N is finitely generated (but not that N is free). Adapt the proof of Theorem M.4.12 to show that N is free.
M.4.5. Let V and W be free modules over R with ordered bases $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $\left(w_{1}, w_{2}, \ldots, w_{m}\right)$. Let $\varphi: V \rightarrow W$ be a module homomorphism. Let $A=\left(a_{i, j}\right)$ be the m-by- n matrix whose $j^{t h}$ column is the co-ordinate vector of $\varphi\left(v_{j}\right)$ with respect to the ordered basis ($w_{1}, w_{2}, \ldots, w_{m}$),

$$
\varphi\left(v_{j}\right)=\sum_{i} a_{i, j} w_{j} .
$$

Show that for any element $\sum_{j} x_{j} v_{j}$ of M,

$$
\varphi\left(\sum_{j} x_{j} v_{j}\right)=\left[w_{1}, \ldots, w_{m}\right] A\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

M.4.6. Retain the notation of the previous exercise. By Proposition M.4.7, there exist invertible matrices $P \in \operatorname{Mat}_{m}(R)$ and $Q \in \operatorname{Mat}_{n}(R)$ such that $A^{\prime}=P A Q$ is diagonal,

$$
A^{\prime}=P A Q=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{s}, 0, \ldots, 0\right)
$$

where $s \leq \min \{m, n\}$. Show that there is a basis $\left\{w_{1}^{\prime}, \ldots, w_{m}^{\prime}\right\}$ of W such that $\left\{d_{1} w_{1}^{\prime}, \ldots, d_{s} w_{s}^{\prime}\right\}$ is a basis of range (φ).
M.4.7. Set $A=\left[\begin{array}{cccc}2 & 5 & -1 & 2 \\ -2 & -16 & -4 & 4 \\ -2 & -2 & 0 & 6\end{array}\right]$. Left multiplication by A defines a homomorphism φ of abelian groups from \mathbb{Z}^{4} to \mathbb{Z}^{3}. Use the diagonalization of A to find a basis $\left\{w_{1}, w_{2}, w_{3}\right\}$ of \mathbb{Z}^{3} and integers $\left\{d_{1}, \ldots d_{s}\right\}(s \leq$ 3), such that $\left\{d_{1} w_{1}, \ldots, d_{s} w_{s}\right\}$ is a basis of range (φ). (Hint: Compute invertible matrices $P \in \operatorname{Mat}_{3}(\mathbb{Z})$ and $Q \in \operatorname{Mat}_{4}(\mathbb{Z})$ such that $A^{\prime}=P A Q$ is diagonal. Rewrite this as $P^{-1} A^{\prime}=A Q$.)
M.4.8. Adopt the notation of Exercise M.4.5. Observe that the kernel of φ is the set of $\sum_{j} x_{j} v_{j}$ such that

$$
A\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=0
$$

That is the kernel of φ can be computed by finding the kernel of A (in \mathbb{Z}^{n}). Use the diagonalization $A^{\prime}=P A Q$ to find a description of $\operatorname{ker}(A)$. Show, in fact, that the kernel of A is the span of the last $n-s$ columns of Q, where $A^{\prime}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{s}, 0, \ldots, 0\right)$.

$$
\text { "bookmt" - 2006/2/23 - 11:06 - page } 368 \text { - \#382 }
$$

M.4.9. Set $A=\left[\begin{array}{cccc}2 & 5 & -1 & 2 \\ -2 & -16 & -4 & 4\end{array}\right]$. Find a basis $\left\{v_{1}, \ldots, v_{4}\right\}$ of \mathbb{Z}^{4} and integers $\left\{a_{1}, \ldots, a_{r}\right\}$ such that $\left\{a_{1} v_{1}, \ldots, a_{r} v_{r}\right\}$ is a basis of $\operatorname{ker}(A)$. (Hint: If s is the rank of the range of A, then $r=4-s$. Moreover, if $A^{\prime}=P A Q$ is the Smith normal form of A, then $\operatorname{ker}(A)$ is the span of the last r columns of Q, that is the range of the matrix Q^{\prime} consisting of the last r columns of Q. Now we have a new problem of the same sort as in Exercise M.4.7.)

M.5. Finitely generated Modules over a PID, part II.

Consider a finitely generated module M over a principal ideal domain R. Let x_{1}, \ldots, x_{n} be a set of generators of minimal cardinality. Then M is the homomorphic image of a free R-module of rank n. Namely consider a free R module F with basis $\left\{f_{1}, \ldots, f_{n}\right\}$. Define an $R-$ module homomorphism from F onto M by $\varphi\left(\sum_{i} r_{i} f_{i}\right)=\sum_{i} r_{i} x_{i}$. Let N denote the kernel of φ. According to Theorem M.4.12, N is free of rank $s \leq n$, and there exists a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of F and nonzero elements d_{1}, \ldots, d_{s} of R such that $\left\{d_{1} v_{1}, \ldots, d_{s} v_{s}\right\}$ is a basis of N and d_{i} divides d_{j} for $i \leq j$. Therefore

$$
M \cong F / N=\left(R v_{1} \oplus \cdots \oplus R v_{n}\right) /\left(R d_{1} v_{1} \oplus \cdots \oplus R d_{s} v_{s}\right)
$$

Lemma M.5.1. Let A_{1}, \ldots, A_{n} be R-modules and $B_{i} \subseteq A_{i}$ submodules. Then

$$
\left(A_{1} \oplus \cdots \oplus A_{n}\right) /\left(B_{1} \oplus \cdots \oplus B_{n}\right) \cong A_{1} / B_{1} \oplus \cdots \oplus A_{n} / B_{n}
$$

Proof. Consider the homomorphism of $A_{1} \oplus \cdots \oplus A_{n}$ onto $A_{1} / B_{1} \oplus \cdots \oplus$ A_{n} / B_{n} defined by $\left(a_{1}, \ldots, a_{n}\right) \mapsto\left(a_{1}+B_{1}, \cdots, a_{n}+B_{n}\right)$. The kernel of this map is $B_{1} \oplus \cdots \oplus B_{n} \subseteq A_{1} \oplus \cdots \oplus A_{n}$, so by the isomorphism theorem for modules,

$$
\left(A_{1} \oplus \cdots \oplus A_{n}\right) /\left(B_{1} \oplus \cdots \oplus B_{n}\right) \cong A_{1} / B_{1} \oplus \cdots \oplus A_{n} / B_{n}
$$

Observe also that $R v_{i} / R d_{i} v_{i} \cong R /\left(d_{i}\right)$, since

$$
r \mapsto r v_{i}+R d_{i} v_{i}
$$

is a surjective R-module homomorphism with kernel $\left(d_{i}\right)$. Applying Lemma M.5.1 and this observation to the situation described above gives

$$
\begin{aligned}
M \cong & \cong v_{1} / R d_{1} v_{1} \oplus \cdots \oplus R v_{s} / R d_{s} v_{s} \oplus R v_{s+1} \cdots \oplus R v_{n} \\
& \cong R /\left(d_{1}\right) \oplus \cdots \oplus R /\left(d_{s}\right) \oplus R^{n-s} .
\end{aligned}
$$

