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‘We can rewrite this as
ler,....es] =[f1,-.., ful4, M.4.5)

where 4 denotes the n—by—s matrix A = (a;,j). According to Proposition
M.4.7, there exist invertible matrices P € Mat,(R) and Q € Mats(R)
such that A" = PAQ is diagonal,

A/ = PAQ = diag(dl,dz, .. .,ds).

We will see below that all the d; are necessarily nonzero. Again, accord-
ing to Proposition M.4.7, P and Q can be chosen so that d; divides d;
whenever i < j. We rewrite (M.4.5) as

le1,....es]O =[fi..... fa]P 1A (M.4.6)
According to Lemma M.4.11, if we define {vq,...,v,} by

[Ul,...,l)n]=[f1,...,fn]P_1
and {wq, ..., ws} by

[wi,...,ws] =ler,....e]0,
then {vy,...,v,} is a basis of F and {wq,...,ws} is a basis of N. By
Equation (M.4.6), we have
[Wi,...,ws] =[vg,..., 44" = [divy, ..., dsvs].
In particular, d; is nonzero for all j, since {djvy,...,dsvs} is a basis of
N. [ |

Exercises M.4

M.4.1. Let R be a commutative ring with identity element and let M be a
module over R.
(a) Let 4 and B be matrices over R of size n—by—s and s—by—t re-
spectively. Show that for [vy,...,v,] € M",

[Vi,...,0](AB) = ([v1,...,v,]A)B.
(b)  Show that if {vq,...,v,} is linearly independent subset of M,
and [vy,...,vy]4 = 0,then 4 = 0.
M.4.2. Prove Lemma M.4.8

M.4.3. Let R denote the set of infinite—by—infinite, row— and column—
finite matrices with complex entries. That is, a matrix is in R if, and only
if, each row and each column of the matrix has only finitely many non—
zero entries. Show that R is a non-commutative ring with identity, and
that R =~ R @ R as R—modules.

In the remaining exercises, R denotes a principal ideal domain.
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M.4.4. Let M be a a free module of rank 7 over R. Let N be a submodule
of M. Suppose we know that N is finitely generated (but not that N is
free). Adapt the proof of Theorem M.4.12 to show that N is free.

M.4.5. Let V and W be free modules over R with ordered bases (vy, vs, ..
and (wy, wa,...,Wn). Letg : V — W be a module homomorphism. Let
A = (ai,j) be the m—by-n matrix whose j’ h column is the co-ordinate
vector of ¢(v;) with respect to the ordered basis (w1, wa, ..., W),

o) =Y aijwj.
i

Show that for any element ) jXjvj of M,

X1
oD xjvj) =[wi,..., wn] 4
J

Xn

M.4.6. Retain the notation of the previous exercise. By Proposition M.4.7,
there exist invertible matrices P € Mat,,(R) and O € Mat,(R) such that
A" = PAQ is diagonal,

A = PAQ = diag(d;. d5, ..., ds,0,...,0),

where s < min{m, n}. Show that there is a basis {w], ..., wy,} of W such
that {d w1, ..., dswg} is a basis of range(¢).

2 5 -1 2
M4.7. Set A = | -2 —16 —4 4 |. Left multiplication by A defines a
-2 =2 0 6
homomorphism ¢ of abelian groups from Z* to Z*. Use the diagonaliza-
tion of A to find a basis {w;, w,, w3} of Z> and integers {d,...ds} (s <
3), such that {diwy,...,dsws} is a basis of range(¢). (Hint: Compute
invertible matrices P € Mat3(Z) and Q € Mat4(Z) such that A’ = PAQ
is diagonal. Rewrite thisas P~14’ = 4Q.)

M.4.8. Adopt the notation of Exercise M.4.5. Observe that the kernel of
@ is the setof ) ; x;v; such that

X1
A| ¢ [ =0.
Xn
That is the kernel of ¢ can be computed by finding the kernel of 4 (in Z").
Use the diagonalization A" = PAQ to find a description of ker(4). Show,

in fact, that the kernel of A is the span of the last # — s columns of Q,
where A’ = diag(dy,d>,...,ds,0,...,0).

-’Un)
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12 5 —1 2 . . 4
M.4.9. Set A = [_2 16 —4 4]. Find a basis {v{,...,v4} of Z
and integers {ay,...,a,} such that {a;vy,...,a,v,} is a basis of ker(A).

(Hint: If s is the rank of the range of A, then r = 4 — 5. Moreover, if
A" = PAQ is the Smith normal form of A4, then ker(A) is the span of the
last  columns of Q, that is the range of the matrix Q' consisting of the
last r columns of Q. Now we have a new problem of the same sort as in
Exercise M.4.7.)

M.S. Finitely generated Modules over a PID, part II.

Consider a finitely generated module M over a principal ideal domain
R. Let x1,...,x, be a set of generators of minimal cardinality. Then
M is the homomorphic image of a free R—module of rank n. Namely
consider a free R module F with basis { f1, ..., f}. Define an R—-module
homomorphism from F onto M by ¢(}_; r;i fi) = D_; riX;. Let N denote
the kernel of ¢. According to Theorem M.4.12, N is free of rank s < n,
and there exists a basis {vq, ..., vy} of F and nonzero elements d1, ..., d;
of R such that {d vy, ..., dsvs}isabasis of N and d; divides d; fori < j.
Therefore

M =F/N =(Rvi®---® Rvy)/(Rdivy & --- D Rdvys)

Lemma M.5.1. Let A4, ..., Ay be R—modules and B; C A; submodules.
Then

(41 @ ®An)/(B1 & ® Bp) = A1/B1 & - & An/Bn.

Proof. Consider the homomorphism of A{@---® A, onto A1/B{&---P
Ay /By defined by (ay,...,ay) — (a1 + B1,--- ,an + By). The kernel
of thismapis By @ :--- @ B, € A; & -+ @ Ay, so by the isomorphism
theorem for modules,

(41 @ ® An)/(B1 & ® Bp) = A1/B1 &+ ® An/Bn.

Observe also that Rv;/ Rd;v; = R/(d;), since
r — rv; + Rd;v;

is a surjective R—module homomorphism with kernel (d;). Applying Lemma
M.5.1 and this observation to the situation described above gives
M =Rvi/Rdjv; ®---® Rvg/Rdsvs & Rvgyq--- D Ry

= R/(d) ®-- @ R/(dy) & R"".



