366

 \oplus

 \oplus

M. MODULES

We can rewrite this as

$$[e_1, \dots, e_s] = [f_1, \dots, f_n]A,$$
 (M.4.5)

where A denotes the *n*-by-s matrix $A = (a_{i,j})$. According to Proposition M.4.7, there exist invertible matrices $P \in Mat_n(R)$ and $Q \in Mat_s(R)$ such that A' = PAQ is diagonal,

$$A' = PAQ = \operatorname{diag}(d_1, d_2, \dots, d_s)$$

We will see below that all the d_j are necessarily nonzero. Again, according to Proposition M.4.7, P and Q can be chosen so that d_i divides d_j whenever $i \leq j$. We rewrite (M.4.5) as

$$[e_1, \dots, e_s]Q = [f_1, \dots, f_n]P^{-1}A'.$$
 (M.4.6)

According to Lemma M.4.11, if we define $\{v_1, \ldots, v_n\}$ by

$$[v_1,\ldots,v_n]=[f_1,\ldots,f_n]P^{-1}$$

and $\{w_1, ..., w_s\}$ by

$$[w_1,\ldots,w_s] = [e_1,\ldots,e_s]Q$$

then $\{v_1, \ldots, v_n\}$ is a basis of F and $\{w_1, \ldots, w_s\}$ is a basis of N. By Equation (M.4.6), we have

$$[w_1, \ldots, w_s] = [v_1, \ldots, v_n]A' = [d_1v_1, \ldots, d_sv_s].$$

In particular, d_j is nonzero for all j, since $\{d_1v_1, \ldots, d_sv_s\}$ is a basis of N.

Exercises M.4

M.4.1. Let R be a commutative ring with identity element and let M be a module over R.

(a) Let A and B be matrices over R of size n-by-s and s-by-t respectively. Show that for $[v_1, \ldots, v_n] \in M^n$,

 $[v_1,\ldots,v_n](AB) = ([v_1,\ldots,v_n]A)B.$

(b) Show that if $\{v_1, \ldots, v_n\}$ is linearly independent subset of M, and $[v_1, \ldots, v_n]A = 0$, then A = 0.

M.4.2. Prove Lemma M.4.8

M.4.3. Let *R* denote the set of infinite–by–infinite, row– and column– finite matrices with complex entries. That is, a matrix is in *R* if, and only if, each row and each column of the matrix has only finitely many non– zero entries. Show that *R* is a non-commutative ring with identity, and that $R \cong R \oplus R$ as *R*–modules.

In the remaining exercises, R denotes a principal ideal domain.

 \oplus

⊕

"bookmt" — 2006/2/23 — 11:06 — page 367 — #381

M.4. FINITELY GENERATED MODULES OVER A PID, PART I 367

 \oplus

 \oplus

M.4.4. Let M be a free module of rank n over R. Let N be a submodule of M. Suppose we know that N is finitely generated (but not that N is free). Adapt the proof of Theorem M.4.12 to show that N is free.

M.4.5. Let *V* and *W* be free modules over *R* with ordered bases $(v_1, v_2, ..., v_n)$ and $(w_1, w_2, ..., w_m)$. Let $\varphi : V \to W$ be a module homomorphism. Let $A = (a_{i,j})$ be the *m*-by-*n* matrix whose j^{th} column is the co-ordinate vector of $\varphi(v_j)$ with respect to the ordered basis $(w_1, w_2, ..., w_m)$,

$$\varphi(v_j) = \sum_i a_{i,j} w_j.$$

Show that for any element $\sum_{j} x_{j} v_{j}$ of M,

 \oplus

 \oplus

$$\varphi(\sum_j x_j v_j) = [w_1, \dots, w_m] A \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}.$$

M.4.6. Retain the notation of the previous exercise. By Proposition M.4.7, there exist invertible matrices $P \in Mat_m(R)$ and $Q \in Mat_n(R)$ such that A' = PAQ is diagonal,

$$A' = PAQ = \operatorname{diag}(d_1, d_2, \dots, d_s, 0, \dots, 0),$$

where $s \leq \min\{m, n\}$. Show that there is a basis $\{w'_1, \ldots, w'_m\}$ of W such that $\{d_1w'_1, \ldots, d_sw'_s\}$ is a basis of range (φ) .

M.4.7. Set $A = \begin{bmatrix} 2 & 5 & -1 & 2 \\ -2 & -16 & -4 & 4 \\ -2 & -2 & 0 & 6 \end{bmatrix}$. Left multiplication by A defines a

homomorphism φ of abelian groups from \mathbb{Z}^4 to \mathbb{Z}^3 . Use the diagonalization of A to find a basis $\{w_1, w_2, w_3\}$ of \mathbb{Z}^3 and integers $\{d_1, \ldots, d_s\}$ ($s \leq 3$), such that $\{d_1w_1, \ldots, d_sw_s\}$ is a basis of range(φ). (Hint: Compute invertible matrices $P \in Mat_3(\mathbb{Z})$ and $Q \in Mat_4(\mathbb{Z})$ such that A' = PAQis diagonal. Rewrite this as $P^{-1}A' = AQ$.)

M.4.8. Adopt the notation of Exercise M.4.5. Observe that the kernel of φ is the set of $\sum_{j} x_{j} v_{j}$ such that

$$A\begin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix} = 0$$

That is the kernel of φ can be computed by finding the kernel of A (in \mathbb{Z}^n). Use the diagonalization A' = PAQ to find a description of ker(A). Show, in fact, that the kernel of A is the span of the last n - s columns of Q, where $A' = \text{diag}(d_1, d_2, \dots, d_s, 0, \dots, 0)$.

M. MODULES

⊕

M.4.9. Set $A = \begin{bmatrix} 2 & 5 & -1 & 2 \\ -2 & -16 & -4 & 4 \end{bmatrix}$. Find a basis $\{v_1, \ldots, v_4\}$ of \mathbb{Z}^4 and integers $\{a_1, \ldots, a_r\}$ such that $\{a_1v_1, \ldots, a_rv_r\}$ is a basis of ker(*A*). (Hint: If *s* is the rank of the range of *A*, then r = 4 - s. Moreover, if A' = PAQ is the Smith normal form of *A*, then ker(*A*) is the span of the

A' = TAQ is the shifth hormal form of A, then Ker(A) is the span of the last r columns of Q, that is the range of the matrix Q' consisting of the last r columns of Q. Now we have a new problem of the same sort as in Exercise M.4.7.)

M.5. Finitely generated Modules over a PID, part II.

Consider a finitely generated module M over a principal ideal domain R. Let x_1, \ldots, x_n be a set of generators of minimal cardinality. Then M is the homomorphic image of a free R-module of rank n. Namely consider a free R module F with basis $\{f_1, \ldots, f_n\}$. Define an R-module homomorphism from F onto M by $\varphi(\sum_i r_i f_i) = \sum_i r_i x_i$. Let N denote the kernel of φ . According to Theorem M.4.12, N is free of rank $s \leq n$, and there exists a basis $\{v_1, \ldots, v_n\}$ of F and nonzero elements d_1, \ldots, d_s of R such that $\{d_1v_1, \ldots, d_sv_s\}$ is a basis of N and d_i divides d_j for $i \leq j$. Therefore

$$M \cong F/N = (Rv_1 \oplus \cdots \oplus Rv_n)/(Rd_1v_1 \oplus \cdots \oplus Rd_sv_s)$$

Lemma M.5.1. Let A_1, \ldots, A_n be *R*-modules and $B_i \subseteq A_i$ submodules. Then

$$(A_1 \oplus \cdots \oplus A_n)/(B_1 \oplus \cdots \oplus B_n) \cong A_1/B_1 \oplus \cdots \oplus A_n/B_n$$

Proof. Consider the homomorphism of $A_1 \oplus \cdots \oplus A_n$ onto $A_1/B_1 \oplus \cdots \oplus A_n/B_n$ defined by $(a_1, \ldots, a_n) \mapsto (a_1 + B_1, \cdots, a_n + B_n)$. The kernel of this map is $B_1 \oplus \cdots \oplus B_n \subseteq A_1 \oplus \cdots \oplus A_n$, so by the isomorphism theorem for modules,

$$(A_1 \oplus \cdots \oplus A_n)/(B_1 \oplus \cdots \oplus B_n) \cong A_1/B_1 \oplus \cdots \oplus A_n/B_n.$$

Observe also that $Rv_i/Rd_iv_i \cong R/(d_i)$, since

$$r \mapsto rv_i + Rd_iv_i$$

is a surjective *R*-module homomorphism with kernel (d_i) . Applying Lemma M.5.1 and this observation to the situation described above gives

$$M \cong Rv_1/Rd_1v_1 \oplus \cdots \oplus Rv_s/Rd_sv_s \oplus Rv_{s+1} \cdots \oplus Rv_n$$
$$\cong R/(d_1) \oplus \cdots \oplus R/(d_s) \oplus R^{n-s}.$$

368