
i
i

“bookmt” — 2006/2/23 — 11:06 — page 366 — #380 i
i

i
i

i
i

366 M. MODULES

We can rewrite this as

Œe1; : : : ; es � D Œf1; : : : ; fn�A; (M.4.5)

where A denotes the n–by–s matrix A D .ai;j /. According to Proposition
M.4.7, there exist invertible matrices P 2 Matn.R/ and Q 2 Mats.R/
such that A0 D PAQ is diagonal,

A0
D PAQ D diag.d1; d2; : : : ; ds/:

We will see below that all the dj are necessarily nonzero. Again, accord-
ing to Proposition M.4.7, P and Q can be chosen so that di divides dj

whenever i � j . We rewrite (M.4.5) as

Œe1; : : : ; es �Q D Œf1; : : : ; fn�P
�1A0: (M.4.6)

According to Lemma M.4.11, if we define fv1; : : : ; vng by

Œv1; : : : ; vn� D Œf1; : : : ; fn�P
�1

and fw1; : : : ; wsg by

Œw1; : : : ; ws � D Œe1; : : : ; es �Q;

then fv1; : : : ; vng is a basis of F and fw1; : : : ; wsg is a basis of N . By
Equation (M.4.6), we have

Œw1; : : : ; ws � D Œv1; : : : ; vn�A
0
D Œd1v1; : : : ; dsvs �:

In particular, dj is nonzero for all j , since fd1v1; : : : ; dsvsg is a basis of
N . n

Exercises M.4

M.4.1. Let R be a commutative ring with identity element and let M be a
module over R.

(a) Let A and B be matrices over R of size n–by–s and s–by–t re-
spectively. Show that for Œv1; : : : ; vn� 2 M n,

Œv1; : : : ; vn�.AB/ D .Œv1; : : : ; vn�A/B:

(b) Show that if fv1; : : : ; vng is linearly independent subset of M ,
and Œv1; : : : ; vn�A D 0, then A D 0.

M.4.2. Prove Lemma M.4.8

M.4.3. Let R denote the set of infinite–by–infinite, row– and column–
finite matrices with complex entries. That is, a matrix is in R if, and only
if, each row and each column of the matrix has only finitely many non–
zero entries. Show that R is a non-commutative ring with identity, and
that R Š R ˚ R as R–modules.

In the remaining exercises, R denotes a principal ideal domain.
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M.4. FINITELY GENERATED MODULES OVER A PID, PART I 367

M.4.4. Let M be a a free module of rank n over R. Let N be a submodule
of M . Suppose we know that N is finitely generated (but not that N is
free). Adapt the proof of Theorem M.4.12 to show that N is free.

M.4.5. Let V and W be free modules over R with ordered bases .v1; v2; : : : ; vn/

and .w1; w2; : : : ; wm/. Let ' W V ! W be a module homomorphism. Let
A D .ai;j / be the m–by–n matrix whose j th column is the co-ordinate
vector of '.vj / with respect to the ordered basis .w1; w2; : : : ; wm/,

'.vj / D

X
i

ai;jwj :

Show that for any element
P

j xjvj of M ,

'.
X

j

xjvj / D Œw1; : : : ; wm�A

264x1
:::

xn

375 :
M.4.6. Retain the notation of the previous exercise. By Proposition M.4.7,
there exist invertible matrices P 2 Matm.R/ and Q 2 Matn.R/ such that
A0 D PAQ is diagonal,

A0
D PAQ D diag.d1; d2; : : : ; ds; 0; : : : ; 0/;

where s � minfm; ng. Show that there is a basis fw0
1
; : : : ; w0

mg of W such
that fd1w

0
1
; : : : ; dsw

0
sg is a basis of range.'/.

M.4.7. Set A D

24 2 5 �1 2

�2 �16 �4 4

�2 �2 0 6

35. Left multiplication by A defines a

homomorphism ' of abelian groups from Z4 to Z3. Use the diagonaliza-
tion of A to find a basis fw1; w2; w3g of Z3 and integers fd1; : : : dsg (s �

3), such that fd1w1; : : : ; dswsg is a basis of range.'/. (Hint: Compute
invertible matrices P 2 Mat3.Z/ and Q 2 Mat4.Z/ such that A0 D PAQ

is diagonal. Rewrite this as P�1A0 D AQ.)

M.4.8. Adopt the notation of Exercise M.4.5. Observe that the kernel of
' is the set of

P
j xjvj such that

A

264x1
:::

xn

375 D 0:

That is the kernel of ' can be computed by finding the kernel of A (in Zn).
Use the diagonalization A0 D PAQ to find a description of ker.A/. Show,
in fact, that the kernel of A is the span of the last n � s columns of Q,
where A0 D diag.d1; d2; : : : ; ds; 0; : : : ; 0/.



i
i

“bookmt” — 2006/2/23 — 11:06 — page 368 — #382 i
i

i
i

i
i

368 M. MODULES

M.4.9. Set A D

�
2 5 �1 2

�2 �16 �4 4

�
. Find a basis fv1; : : : ; v4g of Z4

and integers fa1; : : : ; ar g such that fa1v1; : : : ; arvr g is a basis of ker.A/.
(Hint: If s is the rank of the range of A, then r D 4 � s. Moreover, if
A0 D PAQ is the Smith normal form of A, then ker.A/ is the span of the
last r columns of Q, that is the range of the matrix Q0 consisting of the
last r columns of Q. Now we have a new problem of the same sort as in
Exercise M.4.7.)

M.5. Finitely generated Modules over a PID, part II.
Consider a finitely generated module M over a principal ideal domain

R. Let x1; : : : ;xn be a set of generators of minimal cardinality. Then
M is the homomorphic image of a free R–module of rank n. Namely
consider a free R module F with basis ff1; : : : ; fng. Define an R–module
homomorphism from F onto M by '.

P
i rifi/ D

P
i rixi . Let N denote

the kernel of '. According to Theorem M.4.12, N is free of rank s � n,
and there exists a basis fv1; : : : ; vng of F and nonzero elements d1; : : : ; ds

of R such that fd1v1; : : : ; dsvsg is a basis of N and di divides dj for i � j .
Therefore

M Š F=N D .Rv1 ˚ � � � ˚ Rvn/=.Rd1v1 ˚ � � � ˚ Rdsvs/

Lemma M.5.1. Let A1; : : : ;An be R–modules and Bi � Ai submodules.
Then

.A1 ˚ � � � ˚ An/=.B1 ˚ � � � ˚ Bn/ Š A1=B1 ˚ � � � ˚ An=Bn:

Proof. Consider the homomorphism of A1 ˚� � �˚An onto A1=B1 ˚� � �˚

An=Bn defined by .a1; : : : ; an/ 7! .a1 C B1; � � � ; an C Bn/. The kernel
of this map is B1 ˚ � � � ˚ Bn � A1 ˚ � � � ˚ An, so by the isomorphism
theorem for modules,

.A1 ˚ � � � ˚ An/=.B1 ˚ � � � ˚ Bn/ Š A1=B1 ˚ � � � ˚ An=Bn:

n

Observe also that Rvi=Rdivi Š R=.di/, since

r 7! rvi C Rdivi

is a surjective R–module homomorphism with kernel .di/. Applying Lemma
M.5.1 and this observation to the situation described above gives

M ŠRv1=Rd1v1 ˚ � � � ˚ Rvs=Rdsvs ˚ RvsC1 � � � ˚ Rvn

Š R=.d1/˚ � � � ˚ R=.ds/˚ Rn�s:


