Canonical Form Exercises
 April, 2006

Each of the following matrices has characteristic polynomial $\chi(x)=(x-1)(x-3)^{4}$. Note that, given this characteristic polynomial, there are three possible Jordan forms, corresponding to the three different partitions of 4 . For each matrix A, compute the Jordan form, and find an invertible matrix S in $\operatorname{Mat}_{5}(\mathbb{Q})$ such that $S^{-1} A S$ is in Jordan canonical form. Also find the elementary divisors, the invariant factors, the minimal polynomial, and the rational canonical form of each matrix.
1.

$$
A=\left[\begin{array}{rrrrr}
23 & 18 & -10 & 4 & -8 \\
10 & 28 & -5 & 2 & -12 \\
30 & 45 & -12 & 6 & -20 \\
-30 & 18 & 15 & -3 & -8 \\
20 & 54 & -10 & 4 & -23
\end{array}\right]
$$

It is helpful to know that a basis of the solution space of $(A-3 E) v=0$ is $\left\{\left[\begin{array}{r}-1 \\ 0 \\ 0 \\ 5 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 0 \\ 0\end{array}\right]\right\}$ and a basis of the solution space of $(A-1 E) v=0$ is $\left\{\left[\begin{array}{l}0 \\ 4 \\ 0 \\ 0 \\ 9\end{array}\right]\right\}$.
2.

$$
B=\left[\begin{array}{rrrrr}
11 & 1 & -18 & 40 & -4 \\
20 & 20 & -57 & 124 & -76 \\
-14 & 5 & 30 & -61 & -20 \\
-8 & 2 & 16 & -33 & -8 \\
4 & 4 & -12 & 26 & -15
\end{array}\right]
$$

It is helpful to know that a basis of the solution space of $(B-3 E) v=0$ is $\left\{\left[\begin{array}{r}-1 \\ 0 \\ 4 \\ 2 \\ 0\end{array}\right]\right\}$
and a basis of the solution space of $(B-1 E) v=0$ is $\left\{\left[\begin{array}{l}0 \\ 4 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$.
3.

$$
C=\left[\begin{array}{rrrrr}
11 & 2 & -3 & 1 & 0 \\
-8 & 1 & 3 & -1 & 0 \\
17 & 5 & -3 & 2 & 0 \\
3 & 3 & 0 & 3 & 0 \\
2 & 2 & -2 & 2 & 1
\end{array}\right]
$$

It is helpful to know that a basis of the solution space of $(B-3 E) v=0$ is $\left\{\left[\begin{array}{r}-1 \\ 1 \\ -2 \\ 0 \\ 2\end{array}\right],\left[\begin{array}{r}1 \\ -1 \\ 3 \\ 3 \\ 0\end{array}\right]\right\}$ and a basis of the solution space of $(B-1 E) v=0$ is $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$.

