Mathematics 121 Final Exam - Fred Goodman
 May, 2005
 Version A

Do all problems. Responses will be judged for accuracy, clarity and coherence. This exam has 5 questions and 2 pages.

1. Define the following:
(a) The ascending chain condition for ideals in a ring.
(b) A Euclidean domain.
(c) The dual basis to a basis of a finite dimensional vector space.
(d) The matrix of a linear transformation $T: V \longrightarrow V$ with respect to a (single) basis of the finite dimensional vector space V.
(e) A separable field extension $K \subseteq L$.
(f) A normal field extension $K \subseteq L$.
2. Consider the following conditions on a nonzero, nonunit element p in a principal ideal domain R :

- $p R$ is a maximal ideal.
- $p R$ is a prime ideal.
- p is prime.
- p is irreducible.

What implications hold among these conditions? Prove sufficiently many implications so that all valid implications are entailed. (If you show that A implies B and that B implies C, you don't have to tell me, or to prove, that A implies C.)
3. Consider the matrix

$$
A=\left[\begin{array}{rrrrr}
-1 & 0 & 0 & -3 & 3 \\
1 & 2 & 0 & -1 & 0 \\
0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
-2 & 0 & 0 & -2 & 4
\end{array}\right]
$$

The Smith Normal Form of $x-A$ is

$$
D(x)=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -2+x & 0 \\
0 & 0 & 0 & 0 & \left(2-3 x+x^{2}\right)^{2}
\end{array}\right]
$$

The last diagonal entry of $D(x)$ expands to

$$
4-12 x+13 x^{2}-6 x^{3}+x^{4}=(-2+x)^{2}(-1+x)^{2}
$$

(a) Determine the minimal and characteristic polynomials of A.
(b) Write down the Jordan Canonical Form and the Rational Canonical Form of A.
(c) Find a matrix S such that $S^{-1} A S$ is in rational canonical form.

The following information is useful for this: One has

$$
x-A=P(x) D(x) Q(x),
$$

where $P(x)$ and $Q(x)$ are invertible 5 -by- 5 matrices with entries in $\mathbb{Q}[x]$. The matrix $P(x)^{-1}$ is

$$
P(x)^{-1}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
\frac{1}{3} & 1 & 0 & 0 & 0 \\
0 & 0 & 2-x & -1+x & -1 \\
\frac{1}{3}(-1+x) & -1+x & -1+x & 1-x & 1 \\
\frac{2}{3} & -2+x & \frac{1}{3}(-2+x)(2+x) & -\frac{1}{3}(-2+x)(2+x) & \frac{1}{3}(1+x)
\end{array}\right]
$$

The following matrices might also be useful to you:

$$
\begin{array}{cl}
A^{2}=\left[\begin{array}{ccccc}
-5 & 0 & 0 & -6 & 9 \\
1 & 4 & 0 & -6 & 3 \\
0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
-6 & 0 & 0 & -4 & 10
\end{array}\right], & A^{3}=\left[\begin{array}{ccccc}
-13 & 0 & 0 & -9 & 21 \\
-3 & 8 & 0 & -19 & 15 \\
0 & 0 & 8 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
-14 & 0 & 0 & -6 & 22
\end{array}\right] \\
A-2=\left[\begin{array}{ccccc}
-3 & 0 & 0 & -3 & 3 \\
1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 \\
-2 & 0 & 0 & -2 & 2
\end{array}\right] & (A-2)^{2}=\left[\begin{array}{ccccc}
3 & 0 & 0 & 6 & -3 \\
-3 & 0 & 0 & -2 & 3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 4 & -2
\end{array}\right] \\
(A-1)=\left[\begin{array}{ccccc}
-2 & 0 & 0 & -3 & 3 \\
1 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
-2 & 0 & 0 & -2 & 3
\end{array}\right] & (A-1)^{2}=\left[\begin{array}{ccccc}
-2 & 0 & 0 & 0 & 3 \\
-1 & 1 & 0 & -4 & 3 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
-2 & 0 & 0 & 0 & 3
\end{array}\right]
\end{array}
$$

4. Prove Artin's lemma: any (finite) set of field automorphisms of a field L is linearly independent (regarded as a subset of the L-vector space of L-valued functions on L).
5. State the fundamental theorem of Galois theory.
