Mathematics 121 Midterm Exam I – F. Goodman February, 2005 Version 1

Do all exercises.

Responses will be judged for accuracy, clarity and coherence.

- **1.** Define the following:
 - (a) An ideal in a ring. (You do not have to define ring.)
 - (b) A prime ideal in a ring.
 - (c) A unit in a ring with identity.
 - (d) An irreducible element in a commutative ring with identity.
 - (e) A prime element in a commutative ring with identity.
 - (f) A Euclidean domain.
- 2. Consider the following conditions on a nonzero, nonunit element p in a principal ideal domain R:
 - pR is a maximal ideal.
 - pR is a prime ideal.
 - p is prime.
 - *p* is irreducible.

What implications hold among these conditions? Prove sufficiently many implications so that all valid implications are entailed. (If you show that A implies B and that B implies C, you don't have to tell me, or to prove, that A implies C.)

- **3.** Prove that a Euclidean domain is a principal ideal domain.
- **4.** Let *R* be any ring and *I* any ideal. Let *n* be a natural number. Denote *n*-by*n* matrices over *R* by $\operatorname{Mat}_n(R)$. Show that $\operatorname{Mat}_n(I)$ is an ideal in $\operatorname{Mat}_n(R)$, and $\operatorname{Mat}_n(R)/\operatorname{Mat}_n(I) \cong \operatorname{Mat}_n(R/I)$.
- 5. Let R be a commutative ring with identity. Let J be an ideal in $Mat_2(R)$. Define

$$J_0 = \{ a \in R : \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \in J \}.$$

Show that J_0 is an ideal in R and that $J = Mat_2(J_0)$. Conclude that if R is a field, then $Mat_2(R)$ is simple.