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CHAPTER M

Modules

M.1. The idea of a module
Recall that an action of a group G on a set X is a homomorphism

ϕ : G −→ Sym(X).

Equivalently, one can view an action as a “product” G × X −→ X,
defined in terms of ϕ by gx = ϕ(g)(x), for g ∈ G and x ∈ X. The
homomorphism property of ϕ translates into the mixed associative
law for this product:

(g1g2)x = g1(g2x),

for g1, g2 ∈ G and x ∈ X.
There is an analogous notion of an action of a ring R on an

abelian group M .

Definition M.1.1. An action of a ring R on an abelian group M is
a homomorphism of ϕ : R −→ End(M).

Given an action ϕ of R on M , we can define a “product”

R × M −→ M

in terms of ϕ by rm = ϕ(r)(m) for r ∈ R and m ∈ M . Then the
homomorphism property of ϕ translates into mixed associative and
distributive laws:

(r1r2)m = r1(r2m) and

(r1 + r2)m = r1m + r2m.

Moreover, ϕ(r) ∈ End(M) translates into the second distributive
law:

r(m1 + m2) = rm1 + rm2.
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M.1. THE IDEA OF A MODULE 337

Conversely, given a product R × M −→ M satisfying the mixed
associative law and the two distributive laws, for each r ∈ R, define
the map ϕ(r) : M → M by ϕ(r)(m) = rm. Then the second dis-
tributive law says that ϕ(r) ∈ End(M) and the associative law and
first distributive law say that r 7→ ϕ(r) is a ring homomorophism
from R to End(M).

Definition M.1.2. A module M over a ring R is an abelian group
M together with a product R × M −→ M satisfying

(r1r2)m = r1(r2m),

(r1 + r2)m = r1m + r2m, and

r(m1 + m2) = rm1 + rm2.

Definition M.1.3. If the ring R has identity element 1, an R–
module M is called unital in case 1m = m for all m ∈ M .

The discussion above shows that specifying an R–module M is
the same as specifying a homomorphism ϕ from R into the endomor-
phism ring of the abelian group M . In case R has identity element
1, the R–module M is unital if, and only if, ϕ(1) = idM , the identity
of the ring End(M).

Example M.1.4. A unital module over a field K is the same as a
K–vector space.

Example M.1.5. Any ring R is a module over itself (with the prod-
uct R × R −→ R being the product in the ring.)

Example M.1.6. Any left ideal M in a ring R is a module over R
(with the product R × M −→ M being the product in the ring.)

Example M.1.7. For any ring R, and any natural number n, the
set Rn of n–tuples of elements of R is an R–module with component-
by-component addition and multiplication by elements of R.

Example M.1.8. Any abelian group A is a unital Z–module, with
the product Z×A −→ A given by (n, a) 7→ na = the nth power of a
in the abelian group A.
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338 M. MODULES

Example M.1.9. A vector space V over a field K is a module over
the ring EndK(V ), with the module action given by Tv = T (v) for
T ∈ EndK(V ) and v ∈ V .

Example M.1.10. Let T be a linear map defined on a vector space
V over a field K. Recall from Example 6.2.9 that there is a unital
homomorphism from K[x] to EndK(V )

ϕT (
∑

i

αix
i) =

∑

i

αiT
i.

This homomorphism makes V into a unital K[x]–module.
Conversely, suppose V is a unital K[x]–module, and let ϕ :

K[x] −→ End(V ) be the corresponding homomorphism. Then, V is,
in particular, a unital K–module, thus a K–vector space. For α ∈ K
and v ∈ V , we have αv = ϕ(α)(v). Set T = ϕ(x) ∈ End(V ). We
have T (αv) = ϕ(x)ϕ(α)(v) = ϕ(α)ϕ(x)(v) = α(Tv) for all α ∈ K
and v ∈ V . Thus T is actually a linear map. Moreover, we have

ϕ(
∑

i

αix
i)v =

∑

i

αiT
i(v),

so the given unital K[x]–module structure on V is the same as the
unital K[x]–module structure arising from the linear map T .

What we have called an R–module is also known as a left R–
module. One can define a right R–module similarly.

Definition M.1.11. A right module M over a ring R is an abelian
group M together with a product M × R −→ M satisfying

m(r1r2) = (mr1)r2,

m(r1 + r2) = mr1 + mr2, and

(m1 + m2)r = m1r + m2r.

Example M.1.12. A right ideal M in a ring R is a right R module.

Example M.1.13. Let R be the ring of n-by-n matrices over a field
K. Then, for any s, the vector space M of n-by-s matrices is a
left R module, with R acting by matrix multiplication on the left.
Similarly, the vector space N of s-by-n matrices is a right R module,
with R acting by matrix multiplication on the right.

Convention M.1.14. When R has an identity element, we will
assume, unless otherwise specified, that all R modules are unital.
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M.1. THE IDEA OF A MODULE 339

Submodules

Definition M.1.15. Let R be a ring and let M be an R–module.
An R–submodule of M is an abelian subgroup W such that for all
r ∈ R and all w ∈ W , rw ∈ W .

Example M.1.16. Let R act on itself by left multiplication. The
R–submodules of R are precisely the left ideals of R.

Example M.1.17. Let V be a vector space over K and let T ∈
EndK(V ) be a linear map. Give V the structure of a unital K[x]–
module as in Example M.1.10. Then the K[x]–submodules of V
are the linear subspaces W of V which are invariant under T ; i.e.,
T (w) ∈ W for all w ∈ W . For example, the kernel and range of T
are K[x]–submodules. The reader is asked to verify these assertions
in Exercise M.1.3.

Proposition M.1.18. Let M be an R–module.

(a) Let {Mα} be any collection of submodules of M . Then
∩αMα is a submodule of M .

(b) Let Mn be an increasing sequence of submodules of M .
Then ∪nMn is a submodule of M .

(c) Let A and B be two submodules of M . Then A + B =
{a + b : a ∈ A and b ∈ B} is a submodule of M .

Proof. Exercise M.1.5. n

Example M.1.19. Let M be an R–module and S ⊆ M .

(a) Define

RS = {r1s1 + · · · + rnsn : n ∈ N, ri ∈ R, si ∈ S}.

Then RS is a submodule of M .
(b) Let 〈S〉 be the subgroup of M generated by S. Then 〈S〉+

RS is a submodule of M containing S.
(c) 〈S〉 + RS is the smallest submodule of M containing S.
(d) If R has an identity element and M is unital, then S ⊆ RS,

and 〈S〉 + RS = RS.

The reader is asked to verify these assertions in Exercise M.1.6.
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340 M. MODULES

Definition M.1.20. RS is called the submodule of M generated
by S or the span of S. If x ∈ M , then Rx = R{x} is called the
cyclic submodule generated by x. If there is a finite set S such that
M = RS, we say that M is finitely generated. If there is an x ∈ M
such that M = Rx, we say that M is cyclic.

Remark M.1.21. Either RS or 〈S〉 + RS have a good claim to be
called the submodule of M generated by S. Fortunately, in the case
in which we are chiefly interested, when R has an identity and M is
unital, they coincide.

Direct Sums

Definition M.1.22. The direct sum of several R–modules
M1, M2, . . . , Mn is the Cartesian product endowed with the oper-
ations

(x1, x2, . . . , xn) + (x′

1, x
′

2, . . . , x
′

s) = (x1 + x′

1, x2 + x′

2, . . . , xn + x′

n)

and
r(x1, x2, . . . , xn) = (rx1, rx2, . . . , rxn).

The direct sum of M1, M2, . . . , Mn is denoted M1 ⊕ M2 ⊕ · · · ⊕ Mn.

In a direct sum of R–modules M = M1 ⊕ M2 ⊕ · · · ⊕ Mn, the
subset

M̃i = {0} ⊕ · · · ⊕ Mi ⊕ · · · ⊕ {0}

is a submodule isomorphic (as R–modules) to to Mi. The sum of
these submodules is equal to M .

When is an R–module M isomorphic to the direct sum of several
R–submodules A1, A2, . . . , An? The module M must be isomorphic
to the direct product of the Ai, regarded as abelian groups. In fact,
this suffices:

Proposition M.1.23. Let M be an R–module with submodules
A1, . . . As such that M = A1 + · · · + As. Then the following con-
ditions are equivalent:

(a) (a1, . . . , as) 7→ a1 + · · · + as is a group isomorphism of
A1 × · · · × As onto M .

(b) (a1, . . . , as) 7→ a1 + · · · + as is an R–module isomorphism
of A1 ⊕ · · · ⊕ As onto M .
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M.1. THE IDEA OF A MODULE 341

(c) Each element x ∈ M can be expressed as a sum

x = a1 + · · · + as,

with ai ∈ Ai for all i, in exactly one way.
(d) If 0 = a1 + · · · + as, with ai ∈ Ai for all i, then ai = 0 for

all i.

Proof. The equivalence of (a), (c), and (d) is by Proposition 3.3.1.
Clearly (b) implies (a). On the other hand, the map ϕ : (a1, . . . , as) 7→
a1 + · · · + as is actually a module homomorphism, because

ϕ(r(a1, . . . , as)) = ϕ((ra1, . . . , ran)) = ra1 + · · · + ras

= r(a1 + · · · as) = rϕ((a1, . . . , as)).

Therefore (a) implies (b). n

Free modules
Let R be a ring with identity element and let M be a (unital)

R–module.
We define linear independence as for vector spaces: a subset S of

M is linearly independent over R if whenever x1, . . . , xn are distinct
elements of S and r1, . . . , rn are elements of R, if

r1x1 + r2x2 + · · · + rnxn = 0,

then ri = 0 for all i.
A basis for M is a linearly independent set S with RS = M . An

R module is said to be free if it has a basis.
Every vector space V over a field K is free as a K–module. (We

have shown this for finite dimensional vector spaces, i.e., finitely
generated K–modules.) Modules over other rings need not be free.
For example, any finite abelian group G is a Z–module, but no non-
empty subset of G is linearly independent; in fact, if n is the order
of G, and x ∈ G, then nx = 0, so {x} is linearly dependent.

The R–module Rn is free with the basis

êee1 =




1
0
...
0


 , êee2 =




0
1
...
0


 , . . . , êeen =




0
0
...
1


 .

We call this the standard basis of Rn.
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342 M. MODULES

Proposition M.1.24. Let M be an R–module and let x1, . . . , xn

be distinct nonzero elements of M . The following conditions are
equivalent:

(a) The set F = {x1, . . . , xn} is a basis of M .
(b) The map

(r1, . . . , rn) 7→ r1x1 + r2x2 + · · · + rnxn

is an R–module isomorphism from Rn to M .
(c) For each i, the map r 7→ rxi is injective, and

M = Rx1 ⊕ Rx2 ⊕ · · · ⊕ Rxn.

Proof. It is easy to see that the map in (b) is an R–module homo-
morphism. The set F is linearly independent if, and only if, the map
is injective, and F generates M if, and only if the map is surjective.
This shows the equivalence of (a) and (b).

Suppose that F is a basis. Since F spans M , we have M =
Rx1 + · · · + Rxn. Because F is linearly independent, the sum is
direct and moreover, for each i, the map r 7→ rxi is injective. Thus
(a) implies (c).

Suppose that (c) holds. The first condition in (c) implies that

(r1, . . . , rn) 7→ (r1x1, . . . , rnxn)

is an isomorphism of Rn onto the (external) direct sum

Rx1 ⊕ Rx2 ⊕ · · · ⊕ Rxn.

Since M is the direct sum of the submodules Rxi, the map

(r1x1, . . . , rnxn) 7→ r1x1 + r2x2 + · · · + rnxn

is an isomorphism of the external direct sum onto M . Thus (c)
implies (b). n

Exercises M.1
In the following, R always denotes a ring and M an R–module.

M.1.1. Show that 0x = 0 for all x ∈ M . Here, the 0 on the left side
of the equation is the zero in R, and the 0 on the right side is the
zero in M .

M.1.2. If R has an identity and M is unital, show that (−1)x = −x
for all x ∈ M .

M.1.3. Prove the assertions made in Example M.1.17.
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M.2. HOMOMORPHISMS AND QUOTIENT MODULES 343

M.1.4. Let I be a left ideal of R and define

IM = {r1x1 + · · · + rkxk : k ≥ 1, ri ∈ I, xi ∈ M}.

Show that IM is a submodule of M .

M.1.5. Let N be a submodule of M . Define the annihilator of N in
R by

ann(N) = {r ∈ R : rx = 0 for all x ∈ N}.

Show that ann(N) is a (two-sided) ideal of R

M.1.6. Prove Proposition M.1.18.

M.1.7. Prove the assertions made in Example M.1.19.

M.1.8. Show that a finite dimensional vector space V over a field
K is not free as an EndK(V ) module.

M.1.9. Let V be an n–dimensional vector space over a field K.
Show that V n (the direct sum of n copies of V ) is a free module over
EndK(V ).

M.1.10. Let V be a finite dimensional vector space V over a field
K . Let T ∈ EndK(V ). Give V the corresponding K[x]–module
structure defined by

∑
i αix

iv =
∑

i αiT
i(v). Show that V is not free

as a K[x]–module.

M.2. Homomorphisms and quotient modules

Definition M.2.1. Let M and N be modules over a ring R. An R–
module homomorphism ϕ : M −→ N is a homomorphism of abelian
groups such that ϕ(rm) = rϕ(m) for all r ∈ R and m ∈ M . An
R–module isomorphism is a bijective R–module homomorphism. An
R–module endomorphism of M is an R–module homomorphism from
M to M .

Notation M.2.2. The set of all R–module homomorphisms from
M to N is denoted by HomR(M, N). The set of all R–module en-
domoprhisms of M is denoted by EndR(M).

Example M.2.3. Suppose R is a commutative ring. For any nat-
ural number n, consider Rn as the set of n-by-1 matrices over R
(column ”vectors”). Let T be a fixed n-by-m matrix over R. Then
left multiplication by T is an R-module homomorphism from Rm to
Rn.
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344 M. MODULES

Example M.2.4. Fix a ring R. Let T be a fixed n-by-m matrix
with entries in Z. Then left multiplication by T maps Rm to Rn,
and is an R-module homomorphism even if R is non-commutative.

Example M.2.5. Let R be the ring of n–by–n matrices over a field.
Let M be the left R–module of n–by–s matrices over K. Let T be
a fixed s–by–s matrix over K. Then right multiplciation by T is an
R–module endomorphism of M .

Proposition M.2.6.

(a) If ϕ ∈ HomR(M, N), then ker(ϕ) is a submodule of M and
ϕ(M) is a submodule of N .

(b) ϕ ∈ HomR(M, N) and ψ ∈ HomR(N, P ), then ψ ◦ ϕ ∈
HomR(M, P ).

Proof. Exercise M.2.1. n

Proposition M.2.7.

(a) If ψ, ϕ ∈ HomR(M, N), define their sum by (ϕ + ψ)(m) =
ϕ(m) + ψ(m). HomR(M, N) is an abelian group under ad-
dition.

(b) EndR(M) is a ring with addition defined as above and mul-
tiplication defined by composition.

Proof. Exercise M.2.2. n

Let M be an R–module and N an R–submodule. We can form
the quotient M/N as an abelian group and considier the quotient
map π : M −→ M/N as a homomorphism of abelian groups. In
fact, M/N is an R–module and the quotient map π is an R–module
homomorphism.

Proposition M.2.8. Let M be an R–module and N an R–
submodule. Then the quotient M/N has the structure of an R–
module and the quotient map π : M −→ M/N is a homomorphism of
R–modules. If R has identity and M is unital, then M/N is unital.
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Proof. We attempt to define the product of a ring element r and a
coset m+N by the formula r(m+N) = rm+N . As usual, when we
define an operation in terms of representatives, we have to check that
the operation is well defined. If m+N = m′+N , then (m−m′) ∈ N .
Hence rm−rm′ = r(m−m′) ∈ N , since N is a submodule. But this
means that rm + N = rm′ + N , and the operation is well defined.

Once we have checked that the action of R on M/N is well de-
fined, it is easy to check that the axioms of an R–module are satisfied.
For example, the mixed associative law is verified as follows:

(r1r2)(m + N) = (r1r2)m + N = r1(r2m) + N

= r1(r2m + N) = r1(r2(m + N)).

The quotient map π : M −→ M/N is a homomorphism of abelian
groups, and the definition of the R action on the quotient group
implies that π is an R–module homomorphism:

π(rm) = rm + N = r(m + N) = rπ(m).

The statement regarding unital modules is also immediate from
the definition of the R–module structure on the quotient group. n

Example M.2.9. If I is a left ideal in R, then R/I is an R–module
with the action r(r1 + I) = rr1 + I.

All of the homomorphism theorems for groups and rings have
analogues for modules. Each of the theorems is proved by invoking
the analogous theorem for abelian groups and then by checking that
the homomorphisms respect the R–actions.

Theorem M.2.10. (Homomorphism theorem for modules). Let ϕ :
M −→ P be a surjective homomorphism of R–modules with kernel
N . Let π : M −→ M/N be the quotient homomorphism. There is
an R–module isomorphism ϕ̃ : M/N −→ P satisfying ϕ̃ ◦ π = ϕ.
(See the following diagram.)

M
ϕ

qqqqqqqqqq
qqqqqqqq
qqqqqqqqqqqqqqqqqq P

π

qqqqqqqqqq
qqqqqqqq

qqqqqqqqqq
qqqqqqqq

�
�

�
�

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

∼= ϕ̃

M/N
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346 M. MODULES

Proof. The homomorphism theorem for groups (Theorem 2.7.6)
gives us an isomorphism of abelian groups ϕ̃ : M/N → P satis-
fying ϕ̃ ◦ π = ϕ. We have only to verify that ϕ̃ also respects the R
actions. But this follows at once from the definition of the R action
on M/N :

ϕ̃(r(m + N)) = ϕ̃(rm + N) = ϕ(rm)

= rϕ(m) = rϕ̃(m + N).

n

Example M.2.11. Let R be any ring, M any R–module, and x ∈ R.
Consider the cyclic R–submodule Rx. Then r 7→ rx is an R–module
homomorphism of R onto Rx. The kernel of this map is called the
annihilator of x,

ann(x) = {r ∈ R : rx = 0}.

Note that ann(x) is a submodule of R, that is a left ideal. By the
homomorphism theorem, R/ann(x) ∼= Rx.

Proposition M.2.12. Let ϕ : M −→ M be an R–module homomor-
phism of M onto M , and let N denote its kernel. Then A 7→ ϕ−1(A)
is a bijection between R–submodules of M and R–submodules of M
containing N .

Proof. By Proposition 2.7.12, A 7→ ϕ−1(A) is a bijection between
the subgroups of M and the subgroups of M containing N . It re-
mains to check that this bijection carries submodules to submodules.
This is left as an exercise. n

Proposition M.2.13. Let ϕ : M −→ M be a surjective R–module
homomorphism. Let N be a submodule of M and let N = ϕ−1(N).
Then m + N 7→ ϕ(m) + N is an isomorphism of M/N onto M/N .

Proof. Exercise M.2.5. n
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Proposition M.2.14. Let ϕ : M −→ M be a surjective homomor-
phism of R–modules with kernel N . Let A be a submodule of M .
Then

ϕ−1(ϕ(A)) = A + N = {a + n : a ∈ A and n ∈ N}.

Moreover, A + N is a submodule of M containing N , and

(A + N)/N ∼= ϕ(A) ∼= A/(A ∩ N).

Proof. Exercise M.2.6. n

Exercises M.2
R denotes a ring and M an R–module.

M.2.1. Prove Proposition M.2.6.

M.2.2. Prove Proposition M.2.7.

M.2.3. Complete the proof of Proposition M.2.12.

M.2.4. Let I be an ideal of R. Show that the quotient module
M/IM has the structure of an R/I–module.

M.2.5. Prove Proposition M.2.13.

M.2.6. Prove Proposition M.2.14.

M.2.7. Let R be a ring with identity element. Let M be a finitely
generated R–module. Show that there is a free R module F and a
submodule K ⊆ F such that M ∼= F/K as R–modules.

M.3. Multilinear maps and determinants
Let R be a commutative ring with identity element. All R–

modules will be assumed to be unital.

Definition M.3.1. Suppose that M1, M2, . . . , Mn and N are mod-
ules over R. A function

ϕ : M1 × · · · × Mn −→ N

is multilinear (or R–multilinear) if for each j and for fixed elements
xi ∈ Mi (i 6= j), the map

x 7→ ϕ(x1, . . . , xj−1, x, xj+1, . . . , xn)

is an R–module homomorphism.


