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174 3. PRODUCTS OF GROUPS

3.3.3. Find all abelian groups of order 144. Find both the elemen-
tary divisor decomposition and the invariant factor decomposition
of each group.

3.3.4. How many abelian groups are there of order 128, up to iso-
morphism?

3.3.5. How many abelian groups are there of order p5q4, where p
and q are distinct primes?

3.3.6. Show that Za × Zb is not cyclic if g.c.d.(a, b) ≥ 2.

3.3.7. Let G be a finite abelian group and let p be a prime dividing
|G|. Let pk be the largest power of p dividing |G|. For x ∈ G, show
that x ∈ G[p] ⇔ pjx = 0 for some j ⇔ pkx = 0.

3.3.8. Let G be a finite abelian group, let p1, . . . , pk be the primes
dividing |G|. For b ∈ G, write b = b1 + · · · + bk, where bi ∈ G[pi].
Show that o(b) =

∏

i o(bi).

3.3.9. Suppose a finite abelian group G has invariant factors (m1, m2, . . . , mk).
Show that G has an element of order s if, and only if, s divides m1.

3.3.10. Recall that if a and b are relatively prime natural numbers,
then Zab

∼= Za × Zb as rings.

(a) If a, b are relatively prime natural numbers, show that the
ring isomorphism Zab

∼= Za × Zb implies that Φ(ab) ∼=
Φ(a) × Φ(b).

(b) Show that if N = pk1

1 · · · pks
s is the prime decomposition of

N , then

Φ(N) ∼= Φ(pk1

1 ) × · · · × Φ(pks
s ).

(c) Since these group isomorphisms are obtained independently
of our earlier computations of ϕ(N), show that we can re-
cover the multiplicativity of the Euler ϕ function from the
group theory results. Namely, conclude from from parts (a)
- (c) that ϕ(ab) = ϕ(a)ϕ(b) if a, b are relatively prime, and

that if N = pk1

1 · · · pks
s , then ϕ(N) =

∏

i ϕ(pki

i ).

3.3.11. Find the structure of the group Φ(n) for n ≤ 20.

3.4. Vector Spaces
You can use your experience with group theory to gain a new appre-
ciation of linear algebra. In this section K denotes one of the fields
Q, R, C, or Zp, or any other favorite field of yours.
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3.4. VECTOR SPACES 175

Definition 3.4.1. A vector space V over a field K is a abelian group
with a product K × V → V , (α, v) 7→ αv satisfying the following
conditions:

(a) 1v = v for all v ∈ V .
(b) (αβ)v = α(βv) for all α, β ∈ K, v ∈ V .
(c) α(v + w) = αv + αw for all α ∈ K and v, w ∈ V .
(d) (α + β)v = αv + βv for all α, β ∈ K and v ∈ V .

Compare this definition with that contained in your linear al-
gebra text; notice that we were able to state the definition more
concisely by referring to the notion of an abelian group.

A vector space over K is also called a K–vector space. A vector
space over R is also called a real vector space and a vector space over
C a complex vector space.

Example 3.4.2.

(a) Kn is a vector space over K, and any vector subspace of
Kn is a vector space over K.

(b) The set of K–valued functions on a set X is a vector space
over K, with pointwise addition of functions and the usual
multiplication of functions by scalars.

(c) The set of continuous real–valued functions on [0, 1] (or, in
fact, on any other metric or topological space) is a vector
space over R with pointwise addition of functions and the
usual multiplication of functions by scalars.

(d) The set of polynomials K[x] is a vector space over K, as
is the set of polynomials of degree ≤ n, for any natural
number n.

Let’s make a few elementary deductions from the vector space
axioms: Note that the distributive law α(v+w) = αv+αw says that
the map Lα : v 7→ αv is a group homomorphism of (V, +) to itself.
It follows that Lα(0) = 0 and Lα(−v) = −Lα(v) for any v ∈ V . This
translates to α 0 = 0 and α(−v) = −(αv).

Similarly, (α + β)v = αv + βv says that Rv : α 7→ αv is a group
homomorphism of (K, +) to (V, +). Consequently, 0 v = 0, and
(−α)v = −(αv). In particular, (−1)v = −(1v) = −v.

Lemma 3.4.3. Let V be a vector space over the field K. then for
all α ∈ K and v ∈ V ,

(a) 0v = α0 = 0.
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176 3. PRODUCTS OF GROUPS

(b) α(−v) = −(αv) = (−α)v.
(c) (−1)v = −v.
(d) If α 6= 0 and v 6= 0, then αv 6= 0.

Proof. Parts (a) through (c) were proved above. For (d), suppose
α 6= 0 but αv = 0. Then

0 = α−10 = α−1(αv) = (α−1α)v = 1v = v.

n

We define linear independence, span, and basis for abstract vec-
tor spaces, and linear transformations between abstract vector spaces
exactly as for vector subspaces of Kn. (Vector subspaces of Kn are
treated in Appendix E.) We give the definitions here for the sake of
completeness.

Definition 3.4.4. A linear combination of a subset S of a vector
space V is any element of V of the form α1v1 + α2v2 + · · · + αsvs,
where for all i, αi ∈ K and vi ∈ S. The span of S is the set of all
linear combinations of S. We denote the span of S by span(S).

The span of the empty set is the set containing only the zero
vector {0}.

Definition 3.4.5. A subset S of vector space V is linearly indepen-

dent if for all natural numbers s, for all ααα =







α1

...
αs






∈ Ks, and for all

sequences (v1, . . . vs) of distinct vectors in S, if α1v1 + α2v2 + · · · +
αsvs = 0, then ααα = 0. Otherwise, S is linearly dependent.

Note that a linear independent set cannot contain the zero vector.
The empty set is linearly independent, since there are no sequences
of its elements!

Example 3.4.6. Define en(x) = einx for n an integer and x ∈ R.
Then {en : n ∈ Z} is a linearly independent subset of the (complex)
vector space of C–valued functions on R. To show this, we have to
prove that for all natural numbers s, any set consisting of s of the
functions en is linearly independent. We prove this statement by
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3.4. VECTOR SPACES 177

induction on s. For s = 1, suppose α ∈ C, n1 ∈ Z, and αen1
= 0.

Evaluating at x = 0 gives 0 = αein10 = α. This shows that {en1
}

is linearly independent. Now fix s > 1 and suppose that any set
consisting of fewer than s of the functions en is linearly independent.
Let n1, . . . , ns be distinct integers, α1, . . . , αs ∈ C, and suppose that

α1en1
+ · · · + αsens

= 0.

Notice that enem = en+m and e0 = 1. Also, the en are differentiable,
with (en)′ = inen. Multiplying our equation by e−n1

and rearranging
gives

−α1 = α2en2−n1
+ · · · + αsens−n1

. (3.4.1)

Now we can differentiate to get

0 = i(n2 − n1)α2en2−n1
+ · · · + i(ns − n1)αsens−n1

.

The integers nj−n1 for 2 ≤ j ≤ s are all nonzero and distinct, so the
induction hypothesis entails α2 = · · · = αs = 0. But then Equation
(3.4.1) gives α1 = 0 as well.

Definition 3.4.7. Let V be a vector space over K. A subset of V
is called a basis of V if the set is linearly independent and has span
equal to V .

Example 3.4.8.

(a) The set {1, x, x2, . . . , xn} is a basis of the vector space (over
K) of polynomials in K[x] of degree ≤ n.

(b) The set {1, x, x2, . . . } is a basis of K[x].

Definition 3.4.9. Let V and W be vector spaces over K. A map
T : V → W is called a linear transformation or linear map if T (x +
y) = T (x) + T (y) for all x, y ∈ V and T (αx) = αT (x) for all α ∈ K
and x ∈ V .

Example 3.4.10.

(a) Fix a polynomial f(x) ∈ K[x]. The map g(x) 7→ f(x)g(x)
is a linear transformation from K[x] into K[x].

(b) The formal derivative
∑

k αkx
k 7→

∑

k kαkx
k−1 is a linear

transformation from K[x] into K[x].
(c) Let V denote the complex vector space of C–valued contin-

uous functions on the interval [0, 1]. The map f 7→ f(1/2)
is a linear transformation from V to C.
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178 3. PRODUCTS OF GROUPS

(d) Let V denote the complex vector space of C–valued con-
tinuous functions on the interval [0, 1] and let g ∈ V . The

map f 7→
∫ 1

0
f(t)g(t) dt is a linear transformation from V

to C.

Linear transformations are the homomorphisms in the theory of
vector spaces; in fact, a linear transformation T : V → W between
vector spaces is a homomorphism of abelian groups that addition-
ally satisfies T (αv) = αT (v) for all α ∈ K and v ∈ V . A linear
isomorphism between vector spaces is a bijective linear transforma-
tion between them.

Definition 3.4.11. A subspace of a vector space V is a (nonempty)
subset that is a vector space with the operations inherited from V .

As with groups, we have a criterion for a subset of a vector
space to be a subspace, in terms of closure under the vector space
operations:

Proposition 3.4.12. For a nonempty subset of a vector space to be
a subspace, it suffices that the subset be closed under addition and
under scalar multiplication.

Proof. Exercise 3.4.3. n

Again as with groups, the kernel of a vector space homomorphism
(linear transformation) is a subspace of the domain, and the range
of a vector space homomorphism is a subspace of the codomain.

Proposition 3.4.13. Let T : V → W be a linear map between vector
spaces. Then the range of T is a subspace of W and the kernel of T
is a subspace of V .

Proof. Exercise 3.4.5. n

If V is a vector space over K and W is a subspace, then in
particular W is a subgroup of the abelian group V , so we can form
the quotient group V/W , whose elements are cosets v + W of W in
V . The additive group operation in V/W is (x + W ) + (y + W ) =
(x + y) + W . Now attempt to define a multiplication by scalars on
V/W in the obvious way: α(v + W ) = (αv + W ). We have to check
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3.4. VECTOR SPACES 179

that this this is well–defined. But this follows from the closure of W
under scalar multiplication; namely, if v + W = v′ + W and, then
αv−αv′ = α(v− v′) ∈ αW ⊆ W . Thus αv +W = αv′ +W , and the
scalar multiplication on V/W is well-defined.

Theorem 3.4.14. If W is subspace of a vector space V over K,
then V/W has the structure of a vector space, and the quotient map
π : v 7→ v+W is a surjective linear map from V to V/W with kernel
equal to W .

Proof. We know that V/W has the structure of an abelian group,
and that, moreover, there is a well-defined product K × V/W −→
V/W given by α(v + W ) = αv + W . It is straighforward to check
the remaining vector space axioms. Let us indclude one verification
for the sake of illustration. For α ∈ K and v1, v2 ∈ V ,

α((v1 + W ) + (v2 + W )) = α((v1 + v2) + W ))

= α(v1 + v2) + W = (αv1 + αv2) + W

= (αv1 + W ) + (αv2 + W ) = α(v1 + W ) + α(v2 + W )

Finally, the quotient map π is already known to be a group homo-
morophism. To check that it is linear, we only need to verify that
π(αv) = απ(v) for v ∈ V and α ∈ K. But this is immediate from
the definition of the product, αv + W = α(v + W ). n

V/W is called the quotient vector space and v 7→ v + W the
quotient map. We have a homomorphism theorem for vector spaces
that is analogous to, and in fact follows from, the homomorphism
theorem for groups.

Theorem 3.4.15. (Homomorphism theorem for vector spaces). Let
T : V −→ V be a surjective linear map of vector spaces with kernel
N . Let π : V −→ V/N be the quotient map. There is linear iso-

morphism T̃ : V/N −→ V satisfying T̃ ◦ π = T . (See the following
diagram.)
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180 3. PRODUCTS OF GROUPS

V
T
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qqqqqqqqqqqqqqqqqq V

π
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�
�

�
�

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

∼= T̃

V/N

Proof. The homomorphism theorem for groups (Theorem 2.7.6)

gives us an isomorphism of abelian groups T̃ satisfying T̃ ◦ π =
T . We have only to verify that T̃ also respects multiplication by
scalars. But this follows at once from the definitions: T̃ (α(x+N)) =

T̃ (αx + N) = T (αx) = αT (x) = αT̃ (x + N). n

The next three propositions are analogues for vector spaces and
linear transformations of results that we have established for groups
and group homomorphisms in Section 2.7. Each is proved by adapt-
ing the proof from the group situation. Some of the details are left
to you.

Proposition 3.4.16. (Correspondence theorem for vector spaces)
Let T : V → V be a surjective linear map, with kernel N . Then
M 7→ T−1(M) is a bijection between subspaces of V and subspaces
of V containing N .

Proof. According to Proposition 2.7.12, B 7→ T−1(B) is a bijection
between the subgroups of V and the subgroups of V containing N .
I leave it as an exercise to verify that B is a vector subspace of V if,
and only if, T−1(B) is a vector subspace of V ; see Exercise 3.4.6. n

Proposition 3.4.17. Let T : V → V be a surjective linear trans-
formation with kernel N . Let M be a subspace of V and let
M = T−1(M). Then x + M 7→ T (x) + M defines a linear iso-
morphism of V/M to V /M . Equivalently,

(V/N)/(M/N) ∼= V/M,

as vector spaces.

Proof. By Proposition 2.7.13, the map x + M 7→ T (x) + M is a
group isomorphism from V/M to V /M . But the map also respects
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3.4. VECTOR SPACES 181

multiplication by elements of K, as

α(v + M) = αv + M 7→ T (αv) + M

= αT (v) + M = α(T (v) + M)

We can identify V with V/N , by the homomorphism theorem for
vector spaces, and this identification carries the subspace M to the
image of M in V/N , namely M/N . Therefore

(V/N)/(M/N) ∼= V /M ∼= V/M.

n

Proposition 3.4.18. Let V and V be vector spaces over a field K,
and let T : V −→ V be a surjective linear map with kernel M . Let
N ⊆ M be a vector subspace and let π : V −→ V/N denote the

quotient map. The there is a surjective homomorphism T̃ : V/N −→

V such that T̃ ◦ π = T . (See the following diagram.) The kernel of

T̃ is M/N ⊆ V/N .

V
T

qqqqqqqqqq
qqqqqqqq
qqqqqqqqqqqqqqqqqq V

π

qqqqqqqqqq
qqqqqqqq

qqqqqqqqqq
qqqqqqqq

�
�

�
�

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

T̃

V/N

Proof. By Proposition 2.7.14, T̃ : v + N 7→ T (v) defines a group
homomorphism from V/N onto V with kernel M/N . We only have
to check that this map respects multiplication by elements of K.
This follows from the computation:

T̃ (α(v + N)) = T̃ (αv + N) = T (αv)

= αT (v) = αT̃ (v + N).

n

Proposition 3.4.19. Let A and N be subspaces of a vector space
V . Let π denote the quotient map π : V → V/N . Then π−1(π(A)) =
A + N is a subspace of V containing both A and N . Furthermore,
(A + N)/N ∼= π(A) ∼= A/(A ∩ N).
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182 3. PRODUCTS OF GROUPS

Proof. Exercise 3.4.8. n

We now consider bases and dimension for abstract vector spaces.
This rests on the theory developed for subspaces of Kn in Appendix
E.

Definition 3.4.20. A vector space is said to be finite–dimensional
if it has a finite spanning set. Otherwise, V is said to be infinite–
dimensional.

Proposition 3.4.21. If V is finite dimensional, then V has a finite
basis. In fact, any finite spanning set has a subset that is a basis.

Proof. Suppose that V is finite dimensional and that T is a finite
subset with span(T ) = V . We will show that T has a subset that is
a basis of V .

Suppose that S = {v1, . . . , vs} is a subset of T such that span(S) =
V , but S is linearly dependent. I claim that S has a proper subset
which spans V . In fact, suppose that

∑

i αivi = 0, and αj 6= 0.
then vj =

∑

i6=j(−αi/αj)vi. If a vector x ∈ V is written as linear
combination of {v1, . . . , vs}, we can substitute for vj the expression
∑

i6=j(−αi/αj)vi, and thus express x as a linear combination of the
set S \ {vj}.

Consider a subset B of T which is minimal spanning. That is,
B spans V and no proper subset of B spans V . It follows that B is
linearly independent, and thus a basis. n

An ordered basis of a finite–dimensional vector space is a finite
sequence whose entries are the elements of a basis listed without
repetition; that is, an ordered basis is just a basis endowed with
a particular linear order. Corresponding to an ordered basis B =
(v1, . . . , vn) of a vector space V over K, we have a linear isomorphism
SB : V → Kn given by

SB :
∑

i

αivi 7→
∑

i

αiêeei =











α1

α2

...
αn











,

where (êee1, . . . , êeen) is the standard ordered basis of Kn. SB(v) is
called the coordinate vector of v with respect to B.
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3.4. VECTOR SPACES 183

Since a linear isomorphism carries linearly independent sets to
linearly independent sets, spanning sets to spanning sets, and bases
to bases, it follows (from the corresponding results for Kn) that

1. Any linearly independent set in V has no more than n ele-
ments.

2. Any spanning set in V has at least n elements.
3. Any basis in V has exactly n elements.
4. Any subspace of V is finite–dimensional.
5. Any linearly independent subset of V is contained in a ba-

sis.

See Appendix E for the results for Kn. The unique cardinality of a
basis of a finite–dimensional vector space V is called the dimension
of V and denoted dim(V ). If V is infinite–dimensional, we write
dim(V ) = ∞.

Proposition 3.4.22. Any two n–dimensional vector spaces over K
are linearly isomorphic.

Proof. The case n = 0 is left to the reader.
For n ≥ 1, any two n–dimensional vector spaces over K are each

isomorphic to Kn, and hence isomorphic to each other. n

This proposition reveals that (finite–dimensional) vector spaces
are not very interesting, as they are completely classified by their
dimension. That is why the actual subject of finite–dimensional
linear algebra is not vector spaces but rather linear maps, which
have more interesting structure than vector spaces themselves.

Proposition 3.4.23. Let V be a vector space over K and let S be
a basis of V . Then any function f : S → W from S into a vector
space W extends uniquely to a linear map T : V → W .

Proof. We will assume that S = {v1, . . . , vn} is finite, in order to
simplify the notation, although the result is equally valid if S is
infinite.

Let f : S → W be a function. Any element v ∈ V has a
unique expression as a linear combination of elements of S, v =
∑

i αivi. There is only one possible way to define T (v), namely
T (v) =

∑

i αif(vi). It is then straightforward to check that T is
linear. n
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184 3. PRODUCTS OF GROUPS

Direct sums and complements
The (external) direct sum of several vectors spaces V1, V2, . . . ,

Vn over a field K is the Cartesian product V1 × V2 × · · · × Vn with
component–by–component operations:

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn))

and

α(a1, a2, . . . , an) = (αa1, αa2, . . . , αan),

for ai, bi ∈ Vi and α ∈ K. The direct sum is denoted by V1 ⊕ V2 ⊕
· · · ⊕ Vn.

How can we recognize that a vector space V is isomorphic to the
direct sum of several subspaces A1, A2, . . . , An? It is neccessary and
sufficient that V be be isomorphic to the direct product of the Ai,
regarded as abelian groups.

Proposition 3.4.24. Let V be a vector space over a field K with
subspaces A1, . . . As such that V = A1 + · · ·+As. Then the following
conditions are equivalent:

(a) (a1, . . . , as) 7→ a1 + · · ·+as is a group isomorphism of A1×
· · · × As onto V .

(b) (a1, . . . , as) 7→ a1 + · · · + as is a linear isomorphism of
A1 ⊕ · · · ⊕ As onto V .

(c) Each element x ∈ V can be expressed as a sum x = a1 +
· · · + as, with ai ∈ Ai for all i, in exactly one way.

(d) If 0 = a1 + · · · + as, with ai ∈ Ai for all i, then ai = 0 for
all i.

Proof. The equivalence of (a), (c), and (d) is by Proposition 3.3.1.
Clearly (b) implies (a). We have only to show that if (a) holds,
then the map (a1, . . . , as) 7→ a1 + · · ·+ as respects multiplication by
elements of K. This is immediate from the computation

α(a1, . . . , as) = (αa1, . . . , αas)

7→ αa1 + · · · + αas = α(a1 + · · · + a1 + · · · + as).

n

If the conditions of the proposition are satisfied, we say that V
is the internal direct sum of the subspaces Ai, and we write V =
A1 ⊕ · · · ⊕ As.

In particular, if M and N are subspaces of V such that M +N =
V and M ∩ N = {0}, then V = M ⊕ N .
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3.4. VECTOR SPACES 185

Let N be a subspace of a vector space V . A subspace M of
V is said to be a complement of M if V = M ⊕ N . Subspaces of
finite–dimensional vector spaces always have a complement, as we
shall now explain.

Proposition 3.4.25. Let T : V → W be a surjective linear map of
a finite–dimensional vector space V onto a vector space W . Then T
admits a right inverse; that is, there exists a linear map S : W → V
such that T ◦ S = idW .

Proof. First, let’s check that W is finite–dimensional, with dimen-
sion no greater than dim(V ). If {v1, . . . , vn} is a basis of V , then
{T (v1), . . . , T (vn)} is a spanning subset of W , so contains a basis of
W as a subset.

Now let {w1, . . . , ws} be a basis of W . For each basis element wi,
let xi be a preimage of wi in V (i.e., choose xi such that T (xi) = wi).
The map wi 7→ xi extends uniquely to a linear map S : W → V ,
defined by S(

∑

i αiwi) =
∑

i αixi, according to Proposition 3.4.23.
We have T ◦ S(

∑

i αiwi) = T (
∑

i αixi) =
∑

i αiT (xi) =
∑

i αiwi.
Thus T ◦ S = idW . n

In the situation of the previous proposition, let W ′ denote the
image of S. I claim that

V = ker(T ) ⊕ W ′ ∼= ker(T ) ⊕ W.

Suppose v ∈ ker(T ) ∩ W ′. Since v ∈ W ′, there is a w ∈ W such
that v = S(w). But then 0 = T (v) = T (S(w)) = w, and, therefore,
v = S(w) = S(0) = 0. This shows that ker(T ) ∩ W ′ = {0}. For
any v ∈ V , we can write v = S ◦ T (v) + (v − S ◦ T (v)). The first
summand is evidently in W ′, and the second is in the kernel of T ,
as T (v) = T ◦ S ◦ T (v). This shows that ker(T ) + W ′ = V . We have
shown that V = ker(T )⊕W ′. Finally, note that S is an isomorphism
of W onto W ′, so we also have V ∼= ker(T )⊕W . We have shown the
following:

Proposition 3.4.26. If T : V → W is a linear map and V is finite–
dimensional, then V ∼= ker(T ) ⊕ range(T ). In particular, dim(V ) =
dim(ker(T )) + dim(range(T )).

Now let V be a finite–dimensional vector space and let N be a
subspace. The quotient map π : V → V/N is a a surjective linear
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186 3. PRODUCTS OF GROUPS

map with kernel N . Let S be a right inverse of π, as in the proposi-
tion, and let M be the image of S. The preceding discussion shows
that V = N ⊕ M ∼= N ⊕ V/N . We have proved the following:

Proposition 3.4.27. Let V be a finite–dimensional vector space and
let N be a subspace. Then V ∼= N ⊕ V/N . In particular, dim(V ) =
dim(N) + dim(V/N).

Corollary 3.4.28. Let V be a finite–dimensional vector space and
let N be a subspace. Then there exists a subspace M of V such that
V = N ⊕ M .

Warning: Complements of a subspace are never unique. For exam-
ple, both {(0, 0, c) : c ∈ R} and {(0, c, c) : c ∈ R} are complements
of {(a, b, 0) : a, b ∈ R} in R3.

Exercises 3.4
3.4.1. Show that the intersection of an arbitrary family of linear
subspaces of a vector space is a linear subspace.

3.4.2. Let S be a subset of a vector space. Show that span(S) =
span(span(S)). Show that span(S) is the unique smallest linear sub-
space of V containing S as a subset, and that it is the intersection
of all linear subspaces of V that contain S as a subset.

3.4.3. Prove Proposition 3.4.12.

3.4.4. Show that any composition of linear transformations is linear.
Show that the inverse of a linear isomorphism is linear.

3.4.5. Let T : V → W be a linear map between vector spaces. Show
that the range of T is a subspace of W and the kernel of T is a
subspace of V .

3.4.6. Prove Proposition 3.4.16.

3.4.7. Give another proof of Proposition 3.4.17 by adapting the
proof of Proposition 2.7.13 rather than by using that proposition.

3.4.8. Prove Proposition 3.4.19 by using Proposition 2.7.18, or by
adapting the proof of that proposition.
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3.4.9. Let A and B be finite–dimensional subspaces of a not neces-
sarily finite–dimensional vector space V . Show that A + B is finite–
dimensional and that dim(A+B)+dim(A∩B) = dim(A)+dim(B).

3.4.10. Show that the following conditions are equivalent for a vec-
tor space V :

(a) V is finite dimensional.
(b) V has a finite spanning set.
(c) Every linearly independent subset of V is finite.

(To prove that (c) implies (a), you need the fact that every vector
space has a maximal linearly independent subset; this does not follow
from the theory we have presented, but requires Zorn’s lemma or the
Hausdorff maximal principal.)

3.4.11. Show that the following conditions are equivalent for a vec-
tor space V :

(a) V is infinite–dimensional.
(b) V has an infinite linearly independent subset.
(c) For every n ∈ N, V has a linearly independent subset with

n elements.

3.4.12. Prove Corollary 3.4.28 directly as follows: Let {v1, v2, . . . , vs}
be a basis of N . Then there exist vectors vs+1, . . . , vn such that

{v1, v2, . . . , vs, vs+1, . . . , vn}

is a basis of V . Let M = span({vs+1, . . . , vn}). Show that V =
M ⊕ N .

3.5. The dual of a vector space and matrices
Let V and W be vector spaces over a field K. We observe that

the set HomK(V, W ) of linear maps from V and W also has the
structure of a vector space. The sum of two linear maps is defined
using the addition in W : if S, T ∈ HomK(V, W ), define S + T by
(S+T )(v) = S(v)+T (v) for all v ∈ V . It is straightforward to check
that S + T is also linear. For example,

(S + T )(v1 + v2) = S(v1 + v2) + T (v1 + v2)

= S(v1) + S(v2) + T (v1) + T (v2)

= (S(v1) + T (v1)) + (S(v2) + T (v2))

= (S + T )(v1) + (S + T )(v2).

The product of a scalar α ∈ K with a linear map T is defined using
the scalar multiplication in W : (αT )(v) = αT (v) for v ∈ V . Again it
is straightforward to check that that αT is linear. The zero element
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0 of HomK(V, W ) is the linear map which sends every element of V
to the zero vector in W . The additive inverse of a linear map T is
the map defined by (−T )(v) = −T (v) We now have to check that
HomK(V, W ), with these operations, satisfies all the axioms of a K–
vector space. The verifications are all straightforward computations.
For example, associativity of addition follows from associativity of
addition in W :

(A + (B + C))(v) = A(v) + (B + C)(v) = A(v) + (B(v) + C(v))

= (A(v) + B(v)) + C(v)

= (A + B)(v) + C(v) = ((A + B) + C)(v),

for A, B, C ∈ HomK(V, W ) and v ∈ V . The reader is invited to
check the remaining details in Exercise 3.5.1.

An important special instance of the preceeding construction is
the vector space dual to V , HomK(V, K), which we also denote by
V ∗. A linear map from V into the one dimensional vector space of
scalars K is called a linear functional on V . V ∗ is the space of all
linear functionals on V .

Let us summarize our observations:

Proposition 3.5.1. Let V be a vector space over a field K.

(a) For any vector space W , HomK(V, W ) is a vector space.
(b) In particular, V ∗ = HomK(V, K) is a vector space.

Suppose now that V is finite dimensional with ordered basis B =
(v1, v2, . . . , vn). Every element v ∈ V has a unique expansion v =
∑n

i=1 αivi. For 1 ≤ j ≤ n define v∗j ∈ V ∗ by v∗j (
∑n

i=1 αivi) = αj .
The functional v∗j is the unique element of V ∗ satisfying v∗j (vi) = δi,j

for 1 ≤ i ≤ n. 2

I claim that B∗ = (v∗1, v
∗
2, . . . , v

∗
n) is a a basis of V ∗. In fact, for

any f ∈ V ∗, consider the functional f̃ =
∑n

j=1 f(vj)v
∗
j . We have

f̃(vi) =
n

∑

j=1

f(vj)v
∗
j (vi) =

n
∑

j=1

f(vj)δi,j = f(vi).

Thus f(vi) = f̃(vi) for each element vi ∈ B. It follows from Propo-

sition 3.4.23 that f = f̃ . This means that B∗ spans V ∗. Next we
check the linear independence of B∗. Suppose

∑n
j=1 αjv

∗
j = 0 (the

2Here δi,j is the so called “Kronecker delta”, defined by δi,j = 1 if i = j and

δi,j = 0 otherwise.
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zero functional in V ∗). Applying both sides to a basis vector vi, we
get

0 =
n

∑

j=1

αjv
∗
j (vi) =

n
∑

j=1

αjδi,j = αi.

Thus all the coefficients αi are zero, which shows that B∗ is linearly
independent. B∗ is called the basis of V ∗ dual to B.

We showed above that for f ∈ V ∗, the expansion of f in terms
of the basis B∗ is

f =
n

∑

j=1

f(vj)v
∗
j .

Equivalently, the coordinate vector of f with respect to the orderd
basis B∗ is

SB∗(f) =











f(v1)
f(v2)

...
f(vn)











For v ∈ V , the expansion of v in terms of the basis B is expressed
with the help of the dual basis B∗ as

v =
n

∑

j=1

v∗j (v)vj .

Equivalently, the coordinate vector of v with respect to the ordered
basis B is

SB(v) =











v∗1(v)
v∗2(v)

...
v∗n(v)











In fact, this is clear because for v =
∑n

j=1 αjvj , we have αj = v∗j (v)
for each j, and therefore v =

∑n
j=1 v∗j (v)vj .

We have proved:

Proposition 3.5.2. Let V be a finite dimensional vector space with
basis B = {v1, v2, . . . , vn}.

(a) For each j (1 ≤ j ≤ n), there is a linear functional v∗j on
V determined by v∗j (vi) = δi,j for 1 ≤ i ≤ n.

(b) B∗ = {v∗1, v
∗
2, . . . , v

∗
n} is a a basis of V ∗.

(c) The dimension of V ∗ is equal to the dimension of V .
(d) For each f ∈ V ∗, the expansion of f in terms of the basis

B∗ is

f =
n

∑

j=1

f(vj)v
∗
j .
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(e) For each v ∈ V , the expansion of v in terms of the basis B
is

v =
n

∑

j=1

v∗j (v)vj .

The second dual

Vectors v ∈ V and f ∈ V ∗ pair up to give a number f(v). We can
regard this pairing as a function from V ×V ∗ to K, (v, f) 7→ f(v). In
order to view the two variables on an equal footing, let us introduce
a new notation for the pairing, f(v) = 〈v, f〉. This function of two
variables is bilinear, that is, linear in each variable separately. This
means that for all scalars α and β and all v, v1, v2 ∈ V and f, f1, f2 ∈
V ∗, we have

〈αv1 + βv2, f〉 = α〈v1, f〉 + β〈v2, f〉,

and

〈v, αf1 + βf2〉 = α〈v, f1〉 + β〈v, f2〉.

Linearity in the first variable expresses the linearity of each f ∈ V ∗,

〈αv1 + βv2, f〉 = f(αv1 + βv2) = αf(v1) + βf(v2)

= α〈v1, f〉 + β〈v2, f〉.

Linearity in the second variable, on the other hand, reflects the def-
inition of the vector operations on V ∗,

〈v, αf1 + βf2〉 = (αf1 + βf2)(v) = αf1(v) + βf2(v)

= α〈v, f1〉 + β〈v, f2〉.

The following observation applies to this situation:

Lemma 3.5.3. Suppose that V and W are vector spaces over a field
K, and b : V × W −→ K is a bilinear map. Then b induces linear
maps ι : V −→ W ∗ and κ : W −→ V ∗, defined by ι(v)(w) = b(v, w)
and κ(w)(v) = b(v, w).

Proof. Since b is bilinear, for each v ∈ V the map w 7→ b(v, w) is
linear from W to K, that is, an element of W ∗. We denote this
element of W ∗ by ι(v).
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Moreover, the map v 7→ ι(v) is linear from V to W ∗, because of
the linearity of b in its first variable:

ι(αv1 + βv2)(w) = b(αv1 + βv2, w) = αb(v1, w) + βb(v2, w)

= α ι(v1)(w) + β ι(v2)(w)

= (α ι(v1) + β ι(v2))(w)

The proof for κ : W −→ V ∗ is the same. n

Applying this observation to the bilinear map (v, f) 7→ 〈v, f〉 =
f(v) from V × V ∗ to K, we obtain a linear map ι : V −→ (V ∗)∗,
defined by the formula ι(v)(f) = 〈v, f〉 = f(v).

Lemma 3.5.4. Let V be a finite dimensional vector space over a field
K. For each non-zero v ∈ V , there is a linear functional f ∈ V ∗

such that f(v) 6= 0.

Proof. We know that any linearly independent subset of V is con-
tained in a basis. If v is a non-zero vector in V , then {v} is linearly
independent. Therefore, there is a basis B of V with v ∈ B. Let
f be any function from B into K with f(v) 6= 0. By Proposition
3.4.23, f extends to a linear functional on V . n

Theorem 3.5.5. If V is a finite dimensional vector space, then
ι : V −→ V ∗∗ is a linear isomorphism.

Proof. We already know that ι is linear.
If v is a non-zero vector in V , then there is an f ∈ V ∗ such that

f(v) 6= 0, by Lemma 3.5.4. Thus ι(v)(f) = f(v) 6= 0, and ι(v) 6= 0.
Thus ι is injective. Applying Proposition 3.5.2(c) twice, we have
dim(V ∗∗) = dim(V ∗) = dim(V ). Therefore any injective linear map
from V to V ∗∗ is necessarily surjective, by Proposition 3.4.26. n

Finite dimensionality is essential for this theorem. For an infi-
nite dimensional vector space, ι : V −→ (V ∗)∗ is injective, but not
surjective.

Duals of subspaces and quotients
Let V be a finite dimensional vector space over K. For any subset

S ⊆ V , let S◦ denote the set of f ∈ V ∗ such that 〈v, f〉 = 0 for all
v ∈ S. Likewise, for A ⊆ V ∗, let A◦ denote the set of v ∈ V such
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that 〈v, f〉 = 0 for all f ∈ A. (We identify V with V ∗∗.) S◦ is called
the annihilator of S in V ∗.

Lemma 3.5.6. Let S and T be subsets of V , and W a subspace of
V .

(a) S◦ is a subspace of V ∗.
(b) If S ⊆ T , then T ◦ ⊆ S◦ and S◦◦ ⊆ T ◦◦

(c) T ⊆ T ◦◦.
(d) W = W ◦◦.
(e) S◦ = span(S)◦ and S◦◦ = span(S).

Proof. Parts (a) through (c) are left to the reader as exercises. See
Exercise 3.5.6.

For part (d), we have W ⊆ W ◦◦, by part (c). Suppose that
v ∈ V but v 6∈ W . Consider the quotient map π : V −→ V/W .
Since π(v) 6= 0, by Lemma 3.5.4, there exists g ∈ (V/W )∗ such
that g(π(v)) 6= 0. Write π∗(g) = g ◦ π. We have π∗(g) ∈ W ◦ but
〈v, π∗(g)〉 6= 0. Thus v 6∈ W ◦◦.

Since S◦◦ is a subspace of V containing S by parts (a) and (c),
we have S ⊆ span(S) ⊆ S◦◦. Taking annihilators, and using part
(b), we have S◦◦◦ ⊆ span(S)◦ ⊆ S◦. But S◦ ⊆ S◦◦◦ by part (c), so
all these subspaces are equal. Taking annihilators once more gives
S◦◦ = span(S)◦◦ = span(S), where the final equality results from
part (d). n

With the aid of annihilators, we can describe the dual space of
subspaces and quotients.

Proposition 3.5.7. Let W be a subpace of a finite dimensional vec-
tor space V . The restriction map f 7→ f|W is a surjective linear map
from V ∗ onto W ∗ with kernel W ◦. Consequently, W ∗ ∼= V ∗/W ◦.

Proof. I leave it to the reader to check that f 7→ f|W is linear and
has kernel W ◦.

Let us check the surjectivity of this map. According to Propo-
sition 3.4.27, W has a complement in V , so V = W ⊕ M for some
subspace M . We can use this direct sum decomposition to define
a surjective linear map π from V to W with kernel M , namely
π(w + m) = w, for w ∈ W and m ∈ M . Now for g ∈ W ∗, we have
π∗(g) = g ◦ π ∈ V ∗, and π∗(g)(w) = g(π(w)) = g(w) for w ∈ W .
Thus g is the restriction to W of π∗(g).
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Finally, we have W ∗ ∼= V ∗/W ◦ by the homomorphism theorem
for vector spaces. n

What about the dual space to V/W? Let π : V −→ V/W denote
the quotient map. For g ∈ (V/W )∗, π∗(g) = g ◦ π is an element of
V ∗ that is zero on W , that is, an element of W ◦. The proof of the
following proposition is left to the reader.

Proposition 3.5.8. The map g 7→ π∗(g) = g ◦ π is a linear isomor-
phism of (V/W )∗ onto W ◦.

Proof. Exercise 3.5.8. n

Corollary 3.5.9. . dimW + dimW ◦ = dimV .

Proof. Exercise 3.5.9. n

Matrices
Let V and W be finite dimensional vector spaces over a field K.

Let B = (v1, . . . , vm) be an ordered basis of V and C = (w1, . . . , wn)
an ordered basis of W . Let C∗ = (w∗

1, . . . , w
∗
n) denote the basis of

W ∗ dual to C. Let T ∈ HomK(V, W ).
The matrix [T ]C,B of T with respect to the ordered bases B and

C is the n–by–m matrix whose (i, j) entry is 〈Tvj , w
∗
i 〉.

Equivalently, the j–th column of the matrix [T ]C,B is

SC(T (vj)) =











〈T (vj), w
∗
1〉

〈T (vj), w
∗
2〉

...
〈T (vj), w

∗
n〉











,

the coordinate vector of T (vj) with respect to the ordered basis C.
Another useful description of [T ]C,B is the following: [T ]C,B is

the standard matrix of SCTS−1
B : Km −→ Kn. Here we are indicating

composition of linear maps by juxtaposition; i.e., SCTS−1
B = SC ◦

T ◦ S−1
B . As discussed in Appendix E, the standard matrix M of a

linear transformation A : Km −→ Kn has the property that

Mx = A(x),
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for all x ∈ Km, where on the left side Mx denotes matrix multi-
plication of the n–by–m matrix M and the column vector x. Our
assertion is equivalent to:

[T ]C,B êeej = SCTS−1
B (êeej),

for each standard basis vector êeej of Km. To verify this, we note that
the left hand side is just the j–th column of [T ]C,B, while the right
hand side is

SCTS−1
B (êeej) = SCT (vj),

which is also the j–th column of [T ]C,B, according to our previous
description of [T ]C,B.

Proposition 3.5.10.

(a) The map T 7→ [T ]B,C is a linear isomorphism from
HomK(V, W ) to Matn,m(K)

(b) HomK(V, W ) has dimension dim(V ) dim(W ).

Proof. The reader is invited to check that the map is linear.
The map SC : W −→ Kn, which takes a vector in W to its

coordinate vector with respect to C, is a linear isomorphism. For
any T ∈ HomK(V, W ), the j–th column of [T ]C,B is SC(T (vj)). If
[T ]C,B = 0, then SC(T (vj)) = 0 for all j and hence T (vj) = 0 for all
j. It follows that T = 0. This shows that T 7→ [T ]C,B is injective.

Now let A = (ai,j) be any n–by–m matrix over K. We need to
produce a linear map T ∈ HomK(V, W ) such that [T ]C,B = A. If
such a T exists, then for each j, the coordinate vector of T (vj) with
respect to C must be equal to the j–th column of A. Thus we require
T (vj) =

∑n
i=1 ai,jwi := aj . By Proposition 3.4.23, there is a unique

T ∈ HomK(V, W ) such that T (vj) = aj for all j. This proves that
T 7→ [T ]B,C is surjective.

Assertion (b) is immediate from (a). n

Proposition 3.5.11. Let V , W , X be finite–dimensional vec-
tor spaces over K with ordered bases B, C, and D. Let T ∈
HomK(V, W ) and S ∈ HomK(W, X). Then

[ST ]D,B = [S]D,C [T ]C,B.

Proof. We use the characterization of [S]D,C as the standard ma-

trix of SDSS−1
C , [S]D,C = [SDSS−1

C ]. Similarly [T ]C,B = [SCTS−1
B ],



   

“book” — 2005/3/16 — 16:06 — page 195 — #209
i

i

i

i

i

i

i

i

3.5. THE DUAL OF A VECTOR SPACE AND MATRICES 195

and [ST ]D,B = [SDSTS−1
B ]. Using part (d) of Proposition E.7 from

Appendix E,

[S]D,C [T ]C,B = [SDSS−1
C ][SCTS−1

B ] = [SDSS−1
C SCTS−1

B ]

= [SDSTS−1
B ] = [ST ]D,B

n

For a vector space V over a field K, we denote the set of K–linear
maps from K to K by EndK(V ). Since the composition of linear
maps is linear, EndK(V ) has a product (S, T ) 7→ ST . The reader
can check that EndK(V ) with the operations of addition and and
composition of linear operators is a ring with identity. To simplify
notation, we write [T ]B instead of [T ]B,B for the matrix of a linear
transformation T with respect to a single basis B of V .

Corollary 3.5.12. Let V be a finite dimensional vector space over
K. Let n denote the dimension of V and let B be an ordered basis
of V .

(a) For all S, T ∈ EndK(V ), [ST ]B,B = [S]B[T ]B.
(b) T 7→ [T ]B is a ring isomorphism from EndK(V ) to

Matn(K).

Lemma 3.5.13. Let B = (v1, . . . , vn) and C = (w1, . . . , wn) be two
bases of a vector space V over a field K. Denote the dual bases of
V ∗ by B∗ = (v∗1, . . . , v

∗
n) and C∗ = (w∗

1, . . . , w
∗
n). Let id denote the

identity linear transformation of V .

(a) The matrix [id]B,C of the identity transformation with re-
spect to the bases C and B has (i, j) entry 〈wj , v

∗
i 〉.

(b) [id]B,C is invertible with inverse [id]C,B.

Proof. Part (a) is immediate from the definition of the matrix of a
linear transformation on page 193. For part (b), note that

E = [id]B = [id]B,C [id]C,B.

n

Let us consider the problem of determining the matrix of a linear
transformation T with respect to two different bases of a vector space
V . Let B and B′ be two ordered bases of V . Then

[T ]B = [id]B,B′ [T ]B′ [id]B′,B,
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by an application of Proposition 3.5.11. But the “change of basis
matrices” [id]B,B′ and [id]B′B are inverses, by Lemma 3.5.13 Writing
Q = [id]B,B′ , we have

[T ]B = Q[T ]B′Q−1.

Definition 3.5.14. We say that two linear transformations T, T ′

of V are similar if there exists an invertible linear transformation
S such that T = ST ′S−1. We say that two n–by–n matrices A, A′

are similar if there exists an invertible n–by–n matrix Q such that
A = QA′Q−1.

Proposition 3.5.15.

(a) Let V be a finite dimensional vector space over a field K.
The matrices of a linear transformation T ∈ EndK(V ) with
respect to two different ordered bases are similar.

(b) Conversely, if A and A′ are similar matrices, then there
exists a linear transformation T of a vector space V and
two ordered bases B, B′ of V such that A = [T ]B and A′ =
[T ]B′.

Proof. Part (a) was proved above.
For part (b), let A be an n–by–n matrix, Q an invertible n–by–n

matrix, and set A′ = QAQ−1.
Let E = (êee1, . . . , êeen) be the standard ordered basis of Kn, and let

B′ = (Q−1êee1, . . . , Q
−1êeen); thus B′ consists of the columns of Q−1.

Because Q is invertible, B′ is a basis of Kn. The change of basis
matrix [id]E,B′ is just Q−1.

Define T ∈ EndK(Kn) by T (v) = Av for v ∈ Kn. Then A =
[T ]E, and

A′ = QAQ−1 = [id]B′,E[T ]E[id]E,B′ = [T ]B′

n

Example 3.5.16. In order to compute the matrix of a linear trans-
formation with respect to different bases, it is crucial to be able
compute change of basis matrices [id]B,B′ . Let B = (v1, . . . , vn) and
B′ = (w1, . . . , wn) be two ordered bases of Kn. Because [id]B,B′ =
[id]B,E[id]E,B′ , to compute [id]B,B′ , it suffices to be able to compute
[id]B,E and [id]E,B. One of these requires no computation: [id]E,B′

is the matrix QB′ whose columns are the elements of B′. Similarly,
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[id]E,B is the matrix QB whose columns are the elements of B, so

[id]B,E = Q−1
B . Thus, in order to complete the calculation, we have

to invert one matrix.

Similarly is an equivalence relation on Matn(K) (or on EndK(V )).
A similarity invariant is a function on Matn(K) which is constant
on similarity classes. Given a similarity invariant f , in makes sense
to define f on EndK(V ) by f(T ) = f(A), where A is the matrix of
T with respect to some basis of V . Since the matrices of T with
respect to two different bases are similar, the result does not depend
on the choice of the basis. Two important similarity invariants are
the determinant and the trace.

Because the determinant satisfies det(AB) = det(A) det(B), and
det(E) = 1, it follows that det(C−1) = det(C)−1 and det(CAC−1) =
det(C) det(A) det(C)−1 = det(A). Thus determinant is a similarity
invariant.3

The trace of a square matrix is the sum of its diagonal entries.
Let A = (ai,j). Let C = (ci,j) be an invertible matrix and let
C−1 = (di,j). Since (di,j) and (ci,j) are inverse matrices, we have
∑

i dk,ici,j = δkj for any k, j. Using this, we compute:

tr(CAC−1) =
∑

i

(CAC−1)(i, i) =
∑

i

∑

j

∑

k

ci,jaj,kdk,i

=
∑

j

∑

k

(
∑

i

dk,ici,j)aj,k

=
∑

j

∑

k

δk,jaj,k =
∑

j

aj,j = tr(A).

Thus the trace is also a similarity invariant.

Exercises 3.5

3.5.1. Complete the details of the verification that HomK(V, W ) is
a K–vector space, when V and W are K–vector spaces.

3.5.2. Consider the ordered basis B = (





1
1
1



,





1
1
0



,





1
0
0



) of R3. Find

the dual basis of (R3)∗.

3The determinant is dicussed systematically in Section M.3.
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3.5.3. Define a bilinear map from Kn × Kn to K by

[











α1

α2

...
αn











,











β1

β2

...
βn











] =
n

∑

j=1

αjβj .

Show that the induced map κ : Kn −→ (Kn)∗ given by κ(vvv)(www) =
[www,vvv] is an isomorphism.

3.5.4. Using the previous exercise, identify (R3)∗ with R3 via the

inner product 〈





α1

α2

α3



,





β2

β2

β3



〉 =
∑3

j=1 αjβj . Given an ordered basis

B = (vvv1, vvv2, vvv3) of R3, the dual basis B∗ = (vvv∗1, vvv
∗
2, vvv

∗
3) of R3 is defined

by the requirements 〈vvvi, vvv
∗
j 〉 = δi,j , for 1 ≤ i, j ≤ 3. Find the dual

basis of B = (





1
2
1



,





1
0
1



,





0
1
1



).

3.5.5. Give a different proof of Lemma 3.5.4 as follows: Let V be a fi-
nite dimensional vector space with ordered basis B = (v1, v2, . . . , vn).
Let B∗ = (v∗1, v

∗
2, . . . , v

∗
n) be the dual basis of V ∗. If v ∈ V is nonzero,

show that v∗j (v) 6= 0 for some j.

3.5.6. Prove parts (a) to (c) of Lemma 3.5.6.

3.5.7. Let V be a finite dimensional vector space and let W be a
subspace. Show that f 7→ f|W is a linear map from V ∗ to W ∗, and
that the kernel of this map is W ◦.

3.5.8. Let V be a finite dimensional vector space and let W be a
subspace. Let π : V −→ V/W be the quotient map. Show that
g 7→ π∗(g) = g ◦ π is a linear isomorphism of (V/W )∗ onto W ◦.

3.5.9. Prove Corollary 3.5.9.

3.5.10. Consider the R-vector space Pn of polynomials of degree
≤ n with R-coefficients, with the ordered basis (1, x, x2, . . . , xn).

(a) Find the matrix of differentiation d
dx

: P7 → P7.
(b) Find the matrix of integration

∫

: P6 → P7.
(c) Observe that multiplication by 1 + 3x + 2x2 is linear from

P5 to P7, and find the matrix of this linear map.

3.5.11. Let B = (v1, . . . , vn) be an ordered basis of a vector space
V over a field K. Denote the dual basis of V ∗ by B∗ = (v∗1, . . . , v

∗
n).
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Show that for any v ∈ V and f ∈ V ∗,

〈v, f〉 =
n

∑

j=1

〈v, v∗j 〉〈vj , f〉.

3.5.12. Let B = (v1, . . . , vn) and C = (w1, . . . , wn) be two bases of
a vector space V over a field K. Denote the dual bases of V ∗ by
B∗ = (v∗1, . . . , v

∗
n) and C∗ = (w∗

1, . . . , w
∗
n). Recall that [id]B,C is the

matrix with (i, j) entry equal to 〈wj , v
∗
i 〉, and similarly, [id]C,B is the

matrix with (i, j) entry equal to 〈vj , w
∗
i 〉.

Use the previous exercise to show that [id]B,C and [id]C,B are
inverse matrices.

3.5.13. Let V , W be finite–dimensional vector spaces over K. Let
B, B′ be two ordered bases of V , and let C, C ′ be two ordered bases
of W . Write F = [id]C′,C and G = [id]B′,B. Let T ∈ HomK(V, W )
and S ∈ EndK(V ). Show that [T ]C′,B′ = F [T ]C,B G−1.

3.5.14. Suppose that T and T ′ are two linear transformations of a
finite dimensional vector space V , and that B and B′ are two ordered
bases of V . Show that [T ]B and [T ′]B′ are similar matrices if, and
only if, T and T ′ are similar linear transformations.

3.5.15. Let T be the linear transformation of R3 with standard ma-

trix





1 5 2
2 1 3
1 1 4



. Find the matrix of [T ]B of T with respect to the

ordered basis B = (





1
1
1



,





1
1
0



,





1
0
0



).

3.5.16. Show that

[

1 1
0 1

]

is not similar to any matrix of the form
[

a 0
0 b

]

. (Hint: Suppose the two matrices are similar. Use the simi-

larity invariants determinant and trace to derive information about
a and b.)

3.5.17. Let V be a vector space over K. Show that EndK(V ) is a
ring with identity.


