Exercises for April 1 (ha!)

1. Let R be an integral domain, M an R-module and S a subset of R. Show that $\operatorname{ann}(S)$ is an ideal of R and $\operatorname{ann}(S)=\operatorname{ann}(R S)$.
2. Let M be a module over an integral domain R. Show that $M / M_{\text {tor }}$ is torsion free
3. Let M be a module over an integral domain R. Suppose that $M=A \oplus B$, where A is a torsion submodule and B is free. Show that $A=M_{\text {tor }}$.
4. Let M be a torsion module over a PID R. Suppose m is a period of M and a divides M. Show that $a M$ has period m / a.
5. Let $A=\left[\begin{array}{llll}1 & 0 & 2 & 4 \\ 2 & 3 & 3 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1\end{array}\right]$. Let $N=\left\{A v: v \in \mathbb{Z}^{4}\right\}$. Then N is a subgroup of the free abelian group \mathbb{Z}^{4}, so it must also be free abelian of some rank $s \leq 4$. Find a basis $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ of \mathbb{Z}^{4} and natural numbers a_{1}, \ldots, a_{s} with a_{i} dividing a_{j} for $i \leq j$ such that $\left\{a_{1} v_{1}, \ldots, a_{s} v_{s}\right\}$ is a basis of N.
6. Let $A=\left[\begin{array}{cccc}1-x & 0 & 2 & 4 \\ 2 & 3-x^{2} & 3 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 2 x & 1\end{array}\right]$. Find invertible matrices P, Q in $\operatorname{Mat}_{4}(\mathbb{Q}[x])$ and a diagonal matrix A^{\prime} whose nonzero entries $a_{i}(x)$ satisfy $a_{i}(x)$ divides $a_{j}(x)$ for $i \leq j$, such that $P A Q=A^{\prime}$.
7. Find the invariant factor decomposition, the elementary divisor decomposition, and the primary decompositon of

$$
\begin{aligned}
& \mathbb{Q}[x] /\left(x^{9}-8 x^{8}+24 x^{7}-42 x^{6}+66 x^{5}-78 x^{4}+64 x^{3}-62 x^{2}+21 x-18\right) \\
& \oplus \mathbb{Q}[x] /\left(x^{8}-9 x^{7}+32 x^{6}-62 x^{5}+85 x^{4}-97 x^{3}+78 x^{2}-44 x+24\right)
\end{aligned}
$$

You will probably prefer to let Mathematica factor the polynomials.
8. Prove the uniqueness of the elementary divisor decomposition for a torsion module M over a PID R as follows. Suppose $M=A_{1} \oplus \cdots \oplus A_{s}$ where each A_{i} is cyclic with period a power of an irreducible
(a) For any irreducible $p \in R$, and any $k \geq 1$, show that

$$
p^{k-1} A_{i} / p^{k} A_{i} \cong \begin{cases}R /(p) & \text { if } p^{k} \text { divides the period of } A_{i} \\ 0 & \text { otherwise }\end{cases}
$$

(b) For any irreducible $p \in R$, and any $k \geq 1$, show that

$$
p^{k-1} M / p^{k} M \cong(R /(p))^{\ell(p, k)},
$$

where $\ell(p, k)$ is the number of A_{i} whose period is p^{α} with $\alpha \geq k$.
(c) Suppose

$$
\begin{aligned}
M & =A_{1} \oplus \cdots \oplus A_{s} \\
& =B_{1} \oplus \cdots \oplus B_{t}
\end{aligned}
$$

where each A_{i} and each B_{j} is cyclic with period a power of an irreducible. Conclude that for each irreducible p and for each $k \geq 1$, the number of A_{i} with period exactly p^{k} is the same as the number of B_{j} with period exactly p^{k}.

