Some of these problems have been taken from old Ms Comps. In that spirit, you will have to choose and solve any 6 problems from the following list. Due Friday April $8^{\text {th }}$.

1. Let V be a finite dimensional vector space over a field $K, V \neq\{0\}$, and let A, B : $V \longrightarrow V$ be K-linear maps.
a) Show that the eigenvalues of $A B$ are the same as the eigenvalues of $B A$.
b) Suppose A is invertible and λ is an eigenvalue of A. Prove that $A \neq 0$ and that λ^{-1} is an eigenvalue of A^{-1}.
2. Determine whether or not the two matrices
$A=\left[\begin{array}{ccc}3 & 0 & 2 \\ 0 & 1 & -1 \\ -4 & 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{ccc}5 & -8 & 4 \\ 6 & -11 & 6 \\ 6 & -12 & 7\end{array}\right]$
are similar over Q.
3. Given the matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -11 & 6
\end{array}\right]
$$

prove that there is a 3×3 matrix C such that
$C A C^{-1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$
4. Let A be an $n \times n$ matrix such that the sum of the elements in any row is 1 . Show that A has an eigenvalue equal to 1 .
5. Fix a, b, c in a field K so that $a \neq 0$.

Show that all the matrices $A_{a, b, c}$ given by $A_{a, b, c}=\left[\begin{array}{ccc}3 & 0 & 0 \\ a & 3 & 0 \\ b & c & -2\end{array}\right]$
are similar.
6. a) Find the rational canonical form of $A=\left[\begin{array}{ll}0 & -4 \\ 1 & -4\end{array}\right] \in M_{2}(Q)$.
b) Prove that two 2×2 matrices over a field F which are not scalar matrices (of the form $\alpha I d$ for some $\alpha \in F$) are similar if and only if they have the same characteristic polynomial.
7. Find all similarity classes of 6×6 matrices over C with characteristic polynomial $\left(x^{4}-1\right)\left(x^{2}-1\right)$.
8. Find all similarity classes of 6×6 matrices over Q with minimal polynomial $(x+2)^{2}(x-$ 1).
9. Prove that two 3×3 matrices over a field F are similar if and only if they have the same characteristic and same minimal polynomials.

