Exercises on GCD

These exercises deal with the GCD of several non-zero integers.

- **1.** First we recast the Euclidean algorithm for the gcd of two integers in matrix form.
 - (a) With the notation from the discussion of the gcd in text, show that for each i, there is an invertible 2-by-2 matrix Q_i with integer entries, such that Q_i^{-1} also has integer entries, and $(n_{i-2}, n_{i-1})Q_i = (n_{i-1}, n_i)$.
 - (b) Suppose $n_r \neq 0$ but $n_{r+1} = 0$. Conclude that there is an invertible 2-by-2 matrix Q with integer entries, such that Q_i^{-1} also has integer entries, and $(n_r, 0) = (m, n)Q$.
 - (c) Conclude from this that n_r is an integer linear combination of m and n, and that n_r divides both m, and n. It follows that n_r is the gcd of m and n.

Definition: The greatest common divisor of a collection $\{a_1, \ldots, a_n\}$ of non-zero integers is a natural number β such that β divides each of the a_i and whenever α is a natural number that divides each of the a_i , then α divides β . The gcd of $\{a_1, \ldots, a_n\}$ is unique if it exists.

- **2.** Using Exercise 1, show that given (a_1, a_2, \ldots, a_n) , there exists an *n*-by-*n* invertible matrix *P* with integer entries, such that P^{-1} also has integer entries, and there exists a natural number *d* such that $(d, 0, \ldots, 0) = (a_1, a_2, \ldots, a_n)P$.
- **3.** Using Exercise 2, show that d is an integer linear combination of a_1, a_2, \ldots, a_n , and that d divides each of a_1, a_2, \ldots, a_n . Conclude that d is the gcd of $\{a_1, \ldots, a_n\}$.
- 4. Show that d is the smallest natural number in

$$I(a_1, a_2, \dots, a_n) = \{s_1a_1 + s_2a_2, + \dots + s_na_n : s_1, s_2, \dots, s_n \in \mathbb{Z}\}.$$