Exercises on GCD

These exercises deal with the GCD of several non-zero integers.

1. First we recast the Euclidean algorithm for the gcd of two integers in matrix form.
(a) With the notation from the discussion of the gcd in text, show that for each i, there is an invertible 2-by-2 matrix Q_{i} with integer entries, such that Q_{i}^{-1} also has integer entries, and $\left(n_{i-2}, n_{i-1}\right) Q_{i}=\left(n_{i-1}, n_{i}\right)$.
(b) Suppose $n_{r} \neq 0$ but $n_{r+1}=0$. Conclude that there is an invertible 2-by2 matrix Q with integer entries, such that Q_{i}^{-1} also has integer entries, and $\left(n_{r}, 0\right)=(m, n) Q$.
(c) Conclude from this that n_{r} is an integer linear combination of m and n, and that n_{r} divides both m, and n. It follows that n_{r} is the gcd of m and n.

Definition: The greatest common divisor of a collection $\left\{a_{1}, \ldots, a_{n}\right\}$ of non-zero integers is a natural number β such that β divides each of the a_{i} and whenever α is a natural number that divides each of the a_{i}, then α divides β. The gcd of $\left\{a_{1}, \ldots, a_{n}\right\}$ is unique if it exists.
2. Using Exercise 1, show that given $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, there exists an n-by- n invertible matrix P with integer entries, such that P^{-1} also has integer entries, and there exists a natural number d such that $(d, 0, \ldots, 0)=\left(a_{1}, a_{2}, \ldots, a_{n}\right) P$.
3. Using Exercise 2, show that d is an integer linear combination of $a_{1}, a_{2}, \ldots, a_{n}$, and that d divides each of $a_{1}, a_{2}, \ldots, a_{n}$. Conclude that d is the gcd of $\left\{a_{1}, \ldots, a_{n}\right\}$.
4. Show that d is the smallest natural number in

$$
I\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\left\{s_{1} a_{1}+s_{2} a_{2},+\cdots+s_{n} a_{n}: s_{1}, s_{2}, \ldots, s_{n} \in \mathbb{Z}\right\}
$$

