Mathematics 120 Midterm Exam I – F. Goodman October, 2005 Version 1

Responses will be judged for accuracy, clarity and coherence.

- **1.** Let N be a subgroup of a group G
 - (a) Define the quotient G/N, and the quotient map $\pi : G \to G/N$.
 - (b) What does it mean for N to be normal in G?
 - (c) Assume that N is normal in G and show that G/N is a group (under an appropriate multiplication), and that $\pi: G \to G/N$ is a group homomorphism.
- 2. State and prove the Homomorphism Theorem (a.k.a. the First Isomorphism Theorem).
- **3.** Let a and b be relatively prime natural numbers, each greater than or equal to 2.
 - (a) Show that if x is an integer and both a and b divide x, then also ab divides x.
 - (b) Show that the map $\theta : \mathbb{Z}_{ab} \to \mathbb{Z}_a \times \mathbb{Z}_b$ specified by $\theta([x]_{ab}) = ([x]_a, [x]_b)$ is well-defined, one-to-one, and onto.
 - (c) Show that θ is a ring isomorphism.
- 4. (a) Show that every non-zero subgroup of \mathbb{Z} has the form $d\mathbb{Z} = \{kd : k \in \mathbb{Z}\}$.
 - (b) Show that if H is a non-zero subgroup of \mathbb{Z}_n , then there exists an integer d such that d divides n and $H = \{k[d] : k \in \mathbb{Z}\} = \langle [d] \rangle$.
- 5. Let N be a subgroup of a group G. Show that N is normal if, and only if, for each $a \in G$ there exists a $b \in G$ such that aN = Nb.