REVIEW FOR SECOND MIDTERM

(1) Remember that all exams are cumulative. I will likely recycle a question from the first exam.
(2) Compute the integral

$$
\int_{R} x y d A
$$

with respect to area, where R is the triangle bounded by the x-axis, the line $x=1$, and the line $y=x$.
(3) Consider the integral

$$
\int_{R} x y d A
$$

with respect to area, where R the quarter disc, $x^{2}+y^{2} \leq 2, x \geq 0, y \geq 0$. Convert to an integral in polar coordinates and evaluate.
(4) Sketch the region R over which the integral is performed, giving formulas for the curves forming the boundary of the region:

$$
\int_{0}^{3}\left(\int_{3-y}^{\sqrt{9-y^{2}}} f(x, y) d x\right) d y
$$

Express the integral as an interated integral in the other order.
(5) Find the unit tangent vector and parametric equations for the tangent line to the curve

$$
X(t)=\left[\begin{array}{r}
t^{2} \\
\cos t \\
\sin t
\end{array}\right]
$$

at the point where $t=\pi / 3$.
(6) With $X(t)$ as in the previous exercise, find the unit tangent vector $T(t)$ at any time t. Computed $T^{\prime}(t)$ and show explicitly that it is perpendicular to $T(t)$ for each t.
(7) Find two vectors \mathbf{a} and \mathbf{b} such that both are perpendicular to the vector $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$, and such that \mathbf{a} and \mathbf{b} are perpendicular to each other. Use the vectors \mathbf{a} and \mathbf{b} to write parametric equations for a circle of radius 1 centered at the origin and lying in the plane perpendicular to $\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$.
(8) Consider the vector field $\mathbf{F}(x, y)=\left[\begin{array}{l}x^{2}-y \\ x+y^{2}\end{array}\right]$. Let C be the portion of the parabola $y=x^{2}+1$ traversed from $(0,1)$ to $(1,2)$. Compute the flow $\int_{C} \mathbf{F}(\mathbf{x}) \cdot d \mathbf{x}$ along the curve C Does the value of this integral actually depend on the choice of the curve C or would the flow along any other curve be the same? Replace C with the curve C^{\prime} consisting of two pieces: the curve $y=1$ from $(0,1)$ to $(1,1)$, followed by the curve $x=1$, from $(1,1)$ to $(1,2)$, and compute $\int_{C^{\prime}} \mathbf{F}(\mathbf{x}) \cdot d \mathbf{x}$. Is the vector field \mathbf{F} the gradient of some scalar function?
(9) With \mathbf{F} and C as in the previous exercise, compute the flow of F across C from left to right.
(10) Evaluate the flow around the curve, $\int_{C} \mathbf{F}(\mathbf{x}) \cdot d \mathbf{x}$, where C is the unit circle traversed counterclockwise, and $\mathbf{F}(x, y)=\left[\begin{array}{r}-y \\ x\end{array}\right]$. Compute the path integral again by using Green's theorem to convert it to an area integral. Is the vector field \mathbf{F} the gradient of some scalar function?
(11) Evaluate the flow out of the curve, $1 \int_{C} \mathbf{F}(\mathbf{x}) \cdot \mathbf{n} d s$, where C is the unit circle traversed counterclockwise, and $\mathbf{F}(x, y)=\left[\begin{array}{r}x \\ y^{2}\end{array}\right]$. Compute the path integral again by using Green's theorem to convert it to an area integral.
(12) Study Professor Stroyan's collection of review sheets. I am going to look at them for ideas when I prepare the exam.

