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Problem: Define and study mutation of friezes that is compatible
with cluster mutation, [Baur-Faber-Graz-S-Todorov] for type A.
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Friezes

Let B be a cluster-tilted algebra of finite type. A frieze is an
assignment of positive integers F(M) for every element M of ind B
and ind B[1], subject to mesh relations.
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Frieze of type A

B=k(1-2-3)

Frieze of type A
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Bijections

Theorem. [Conway-Coxeter, Baur-Marsh, Caldero-Chapoton,
BMRRT, Schiffler, ...]
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In type A we have F(M) =Y yep 1
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Problem: Define and study mutation of friezes that is compatible
with cluster mutation.
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Mutation of F F F F
type A % 1,
friezes : /: \: /: \:

Theorem. [Baur-Faber-Graz-S-Todorov] Let m be an entry in a
frieze of type A and m’ the entry at the same place after mutation at arc
a. Then §,(m) = m—m’ is given by:

If me X then 6,(m) = [my (m) —m3(m)] 7y (m) —75(m)]

If meY then 6,(m) = ~[n5(m) - 2my (m)][r5(m) - 2m7 (m)]

If m e Z then 6,(m) = wi(m)7wh(m) +xl(m)x}(m) - 37, (m)x}(m)
If meF then 6,(m) =0.

m.(m) are certain projections of m onto the boundary of Z. [Result relies
heavily on the representation theory of modules of typeA.]



From type D to type A

This approach appears in [Essonana Magnani] to study cluster
variables in type D as cluster variables in type A.

Type D

Glued Type D

4 2 3 2 1 4 2 s 2 3 9 1 4 o
w7 5 5 1 3 7.

w7 5 5 1 3 7 -
5 17 8 2 2 5 17

5 17 8 2 2 5 17
6 33 1.3 2. 12 27 3 3 3 12 -
22 9 1 3 1 6-

Next, complete this glued type D pattern to a frieze of type A such
that this completion behaves well with mutations. The precise
operation is easily seen on the level of surface triangulations.



From type D to type A

Let T be a triangulation of a once punctured disk, and let / be an
arc of T attached to the puncture. Then we obtain a new polygon
with triangulation by cutting S at i and gluing two copies of the
cut surface at 7 as follows.




From type D to type A

The frieze of type A coming from cutting S has lots of symmetry
R =R’ correspond to arcs in S attached to the puncture, A= A’,
and contains the glued type D as a sub-pattern A u B.

Theorem. [Garcia Elsener - S] Let arc a€ T such that a#i. Then
mutation at a of the type D frieze is obtained by ungluing the
pattern p,ua (AU B) in the corresponding type A frieze.

Note: a# i is not an obstruction, because we can always choose to
cut at a different arc.
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Mutation of type D friezes
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Theorem. [Garcia Elsener - S] Let m be an entry in &t and a # 1.
Then §,(m) = m—m’ is given by:

It m € X then 62(m) = [p1(m) = p5(m)][py(m) = p;(m)]

I m € Y then 6,(m) = ~[p3 (m) - 25 ()] [p3 (m) - 203 ()]

If m e Zp then d,(m) = pi(m)p,(m) + pl(m)p},(m) =3 py(m)pl,(m)
If me Fp then 6,(m) =0.

If then m’ = pL(m) ph(m) + pr(m) px(m)’.

p«(m) are certain projections of m onto the boundary of Zp or R or A.



Question: Can we realize this operation of going from type D to
type A on the level of the corresponding module categories?

Thank you!



