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History and Goals

I Extend the Burnside ring of a group to categories. For groups,
induction theorems and idempotent formulas control
representations and provide decompositions of group
cohomology. Extend this to categories of interest such as the
orbit category.

I Extend biset functors from groups to categories. These have
given an approach to computing group cohomology, and
provide a context for fundamental constructions, including the
rational character ring and the (torsion-free part of) the Dade
group.

The orbit category of a group: objects are finite G -sets, morphisms
equivariant maps.
The Burnside ring b(G ) is the Grothendieck of the orbit category
with respect to disjoint unions.



Sets with an action of a category

C is a finite category.
A C-set is a functor Ω : C → some category; where ‘some category’
might be
F = finite sets,
FI = finite sets with injective maps,
SpanFI = the span category of finite sets with injections = FI#,
or:
something else!
The Burnside ring of C is b(C) = Grothendieck group finite C-sets
with relations Θ = Ω + Ψ if Θ ∼= Ω tΨ as C-sets.
The product of C-sets is defined pointwise:
(Ω ·Ψ)(x) := Ω(x)×Ψ(x).



Example: the poset C = x < y

The t-indecomposable C-sets have the form

Ωn := {1, . . . , n} → {∗}, n ≥ 0.

We see that a finite category may have infinitely many
non-isomorphic ‘transitive’ sets.

bF (C) = Z{Ω0,Ω1,Ω2, . . .} ∼= ZN×≥0

What is wrong with this?
The ring is too complicated. It is not even finitely generated.



Issues

I If C = G is a finite group it does not matter which of the
target categories we choose. They all give the ‘same’ notion
of a G -set and b(G ). For categories the target category does
make a difference. Which should we take?

I The Burnside ring of a small category is already overly
complicated.

Conclusion: what definition of Burnside ring should we take?



More on the poset C = x < y

On the other hand

bFI(C) = ZΩ0 ⊕ ZΩ1.

has rank 2, and is not a complicated ring.
Furthermore

bF (C) = Z{Ω0,Ω1,Ω2, . . .} ∼= ZN×≥0

= bFI(C)⊕ J

where J = Z{Ω2 − Ω1,Ω3 − Ω1, . . .} is an ideal in bF (C).

For what it is worth, bSpanFI(C) has rank 3, with basis in bijection
with the positive roots of the A2 root system.



What should the Burnside ring of a category be?

We have several choices for what the target category of a C-set
should be, giving different Burnside rings. The Burnside ring
should

I extend the notion for finite groups,

I give a reasonable answer that is not too complicated for easy
categories,

I be a home for invariants such as the Lefschetz invariant of a
C-space,

I have a good connection with representation theory,

I be a projective biset functor,

I have some symmetry properties, so that b(C) ∼= b(Cop), for
instance.

All of F ,FI and SpanFI, as well as other constructions, fail
some of these criteria.



Conclusions

What may happen with C-sets is more complicated that what
happens when C is a group.

We may allow more than one candidate for the Burnside ring and
explore the relationships between the different possibilities.



C-sets with values in FI

The relationship we saw before between bF (C) and bFI(C) holds
in general.

Theorem
Each C-set Ω ∈ FC has a unique largest quotient with values in
FI. The natural map ηΩ : Ω→ ΩFI preserves products of C-sets.

Corollary

There are ring homomorphisms bFI(C)
i∗−→ bF (C)

j∗−→ bFI(C) so
that j∗i∗ = 1. Thus bF (C) = bFI(C)⊕ J where J = ker J∗ is an
ideal of bF (C).



The marks homomorphism

There is a ring homomorphism m : b(C)→ Zcc(C) that is the usual
marks homomorphism in case C is a group.

cc(C) := set of conjugacy classes of non-empty, connected
subcategories of C.

Subcategories D1,D2 are conjugate if D1 = ηD2 where η : C → C
is a self-equivalence naturally isomorphic to the identity.

The coordinate value mD(Ω) is the number of indecomposable
constant D-sets in Ω ↓CD. In case C is a group this definition gives
the usual marks homomorphism.



A semisimple subalgebra of the Burnside ring

A full subcategory D of C is an ideal if whenever x ∈ D and there
is a homomorphism x → y then y ∈ D. Ideals form a lattice L
under union and intersection.

For each ideal D there is an idempotent element eD ∈ bFI(C) that
is a constant single point on D and empty at other objects.

Theorem
The span in bFI(C) of the eD is a subalgebra isomorphic to the
Möbius algebra of L. It is mapped by the marks homomorphism
isomorphically to ZL.



Bisets for categories

These were introduced in
J. Bénabou, Les distributeurs, 1973.
and appear also
Marta Bunge, Categories of Set-Valued Functors, University of
Pennsylvania, 1966.

Given categories C and D a (C,D)-biset is a C × Dop-set CΩD.

Composition of bisets: given a (C,D)-biset CΩD and a (D, E)-biset

DΨE there is a (C, E)-biset Ω ◦Ψ given by

Ω ◦Ψ(x , z) =
⊔
y∈D

Ω(x , y)×Ψ(y , z)/ ∼

where ∼ is the equivalence relation generated by (uβ, v) ∼ (u, βv)
whenever u ∈ Ω(x , y1), v ∈ Ψ(y2, z) and β : y2 → y1 in D.



Biset functors

Proposition

The operation ◦ is associative. For each category C there is an
identity biset CCC .
Let A(C,D) be the Grothendieck group of finite (C,D)-bisets with
respect to t, thus extending the notion of the double Burnside ring
for groups.
The biset category B has as objects all finite categories, with
homomorphisms HomB(C,D) = A(D, C).
A biset functor is a linear functor B→ Z-mod.
This extends the usual notion of biset functors defined on groups.
The usual formalities for such functor categories apply: every
simple functor on B restricts to groups either giving a simple
functor or zero, and every simple functor on groups extends
uniquely to a simple functor defined on categories.



Bisets free on each side

A C-set Ω is representable if Ω ∼=
⊔
Hom(xi ,−), for certain objects

xi ∈ C.
A biset CΩD is biadjoint over a ring R if the left and right adjoints
of the functor RΩ⊗RD − coincide.

Theorem
If CΩD and DΨE are bisets that are representable on restriction to
each side, or are biadjoint, then so is CΩ ◦ΨE .

Let Bbiadjoint
1,1 be the subcategory of B obtained by using only

biadjoint bisets that are representable on each side.

The notation is suggested by the fact that, for categories that are
groups, all stabilizers of elements in such bisets, on the left and on
the right, are 1. In this case such bisets are automatically biadjoint.



Cohomology as a biset functor

The cohomology ring of a category C is H∗(C) := Ext∗ZC(Z,Z),
where Z is the constant functor.

Theorem
C 7→ H∗(C) has the structure of a functor on Bbiadjoint

1,1 .

This provides a solution to the problem of finding a ‘corestriction’
map in the cohomology of categories, related to an approach of
Carlson, Peng and Wheeler (1998).

Biset functors on Bbiadjoint
1,1 were called global Mackey functors in

Webb, ‘Two classifications ...’, J. Pure Appl. Alg. (1993).
They are easier to work with than general biset functors.
A formula was given in Webb (1993) for the simple global Mackey
functors and an application given to computing group cohomology.
The theory is not yet so advanced in the context of categories.
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