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Persistence Modules

Persistence Modules

A persistence module is a representation of a partially ordered set P
with values in a category D.

That is, if D is a category and P is a poset, a persistence module M for
P with values in D assigns
m an object M(x) of D for each x € P, and

m a morphism M(x < y) in Morp(M(x), M(y)) for each x,y € P with
XY,

satisfying

M(x < z) = M(y < z)oM(x < y) whenever x,y,z € P with x <y < z.
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Persistence Modules

Persistence Modules

Persistent homology uses persistence modules to attempt to discern the
genuine topological properties of a finite data set.

When P is a finite poset and D is K-mod, persistence modules for P are
modules for the poset algebra of P.
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Persistence Modules

Introduction /Applications

Persistent homology has been recently used:
m to study atomic configurations (Hiraoka, Nakamura, Hirata)
m to study viral evolution (Chan, Carlsson, Rabadan)
m to analyze neural activity (Giusti, Pastalkova, Curto)
m to filter noise in sensor networks (Baryshnikov, Ghrist)
etc.
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Persistence Modules

Example (Ambiguous
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Persistence Modules

Another Example (Ambiguous H;)
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Persistence Modules

Another Example (Ambiguous H;)
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Persistence Modules

Another Example (Ambiguous Hp)
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Persistence Modules

So what do we do?

m Suppose X is a finite data set contained in a metric space with
undetermined topological features.

m The data set is associated to its Vietoris-Rips complex (Cc) -,
m When § < ¢, C5 — C, thus ¢ = C, is a persistence module.

m We take an appropriate homology, depending on which topological
features we wish to distinguish between.
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Persistence Modules

Summary of Persistent Homology

m As c increases generators for homology are born and die, as cycles
appear and become boundaries.

m One takes the viewpoint that true topological features of the data
set can be distinguished from noise by looking for intervals which
"persist” for a long period of time.

m Informally, we "keep" an indecomposable summand of f when it
corresponds to a wide interval. Conversely, cycles which disappear
quickly after their appearance are interpreted as noise and
disregarded.

m By passing to the jump discontinuities of the Vietoris-Rips complex,
one obtains a representation of equioriented A,,.
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Persistence Modules

Example

As ¢ increases, we obtain an inclusion of simplicial complexes
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Persistence Modules

Example

We take homology
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Persistence Modules
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Algebraic Stability

Bottleneck Metric

A bottleneck metric is a way of defining a metric on the collection of
finite multisubsets of a fixed set ¥.

A bottleneck metric comes from
m a metric d on X, and
m a function W : X — (0, 00), satisfying

\W(o) — W(r)| < d(o,7), for all 0,7 € X.

Our multisubsets will be the indecomposable summands of a persistence
module with their multiplicities.
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Algebraic Stability

Bottleneck Metric Example
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Bottleneck Metric Example
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Algebraic Stability

Bottleneck Metric Example
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Algebraic Stability

Bottleneck Metric Example

— /W:s small
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Algebraic Stability

Interleaving Metrics

The other metric is an interleaving metric. An interleaving metric
comes from

m a monoid 7T (P) that acts on the category of generalized persistence
modules, and

m a metric d’ on P.

The metric allows us to assign a notion of height to the elements of

T(P).
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Algebraic Stability

Interleaving Metrics

The interleaving distance between two persistence modules / and M is
inf{e : 3N, T € T(P), h(N), h(T') < €}, and one obtains the commutative
diagram below

1 r ITA

M MA MAT
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Algebraic Stability

Algebraic Stability

Theorem (Isometry Theorem)

Let P = (0,00)( or R), ([0,00),+) C T(P). Then the interleaving
metric D equals the bottleneck metric Dg.

This suggests the following representation-theoretic analogue of the
isometry theorem.

Let P be a finite poset and let K be a field. Choose a full subcategory C
of persistence modules, and let

m D be the interleaving metric restricted to C, and

m Dg be a bottleneck metric on C which incorporates some algebraic
information.

Prove that Id : (C, D) — (C, Dg) is an isometry or a contraction.
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Metric on P

We use a weighted graph metric on the Hasse quiver of the poset.
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Algebraic Stability

Metric on P

First, we suspend the poset at infinity.
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Algebraic Stability

Metric on P

First, we suspend the poset at infinity.
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Algebraic Stability

Metric on P

We may use the "democratic” variant
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Algebraic Stability

Isometry Theorem 1

Theorem (Meehan, M.)

Let P be an n-Vee and let C be the full subcategory of persistence
modules consisting of direct sums of interval modules. Let (a, b) be a
democratic choice of weights and let D denote interleaving distance
(corresponding to the weight (a, b)) restricted to C.

Set W(M) = min{e : Hom(M, MTA) =0,T,A € T(P), h(T), h(A) < €},
and let Dg be the bottleneck distance on C corresponding to the
interleaving distance and W'.

Then, the identity is an isometry from (C, D) - (C, Dg).
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Algebraic Stability

Isometry Theorem 2

'
Theorem (Meehan, M.)

Let P be equioriented A, and let (a;, b) be any choice of weights. Let D
denote interleaving distance, and again

set W(M) = min{e : Hom(M, MITA) =0,T,A € T(P), h(T), h(A) < €}.
Let Dg be the bottleneck distance corresponding to the interleaving
distance and W.

Then, one obtains a "shifted” isometry theorem.
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Bottleneck metric on the Auslander-Reiten Quiver

Bottleneck metric on the AR quiver

[1,8] — [2.8] — [3.8] — [4,8] — [5.8] — [6,8] — [7.8] — [§]
[1.‘7] — [2,‘7] — [&‘7] — [4,‘7] — [5.‘7] — [’5-‘7] — [l]

[L‘G] — [2,‘6] — [3A‘<5] — [4,‘6] — [Fx‘ti] — [Ji]

[1.‘5] — [2,‘5] — [3«‘5] — ['1}5] [5"]

[1.‘1] — [2,‘4] — [3“4] — ["1]

[1.‘3] — [2,‘3] — [Ll

[1.‘ 2 — [g]

[‘IJ

AR quiver of equioriented Ag .
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Bottleneck metric on the Auslander-Reiten Quiver

Arbitrary Orientations

[1 2] (3] [4,8]
N N N
1,2 2.3 3.9 4,7
- N N VRN
(1.3 2.3 (3.7 f4.6]
/ NN SN SN
1 7 (1,8 [2,7 [3,6] [4,5]
\ / v NN
. . 5,8 7 2,6] 3,5] ]
> ' s ) N
\ / 6.8 5,7 1,6 2,5 3,4]
N SN /N YN SN S
5 7,8 6,7 [5.6] 11,5] 2.4]
\ / SN /N SN N S
s 8] [7] 6] 5] [1,4]

A different orientation on Ag with its AR quiver.

David Meyer Smith College

Algebraic Stabi itrary Orientations of A,



Bottleneck metric on the Auslander-Reiten Quiver

3 Metrics

Since

the graph metric on the AR quiver for A, agrees with the classical
bottleneck metric, and

any orientation on A, corresponds to the Hasse quiver of a poset;

we wish to prove a stability theorem for an arbitrary orientation of A,,.
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Bottleneck metric on the Auslander-Reiten Quiver

3 Metrics

Here are the metrics.
m Bottleneck 1
d=interleaving metric, W(M) = min{e : Hom(M, MT'A) = 0 (same
as previous work)
m Interleaving metric (same as previous work)

m Bottleneck 2
d=weighted graph metric on the AR quiver, W(M) is distance to
zero (motivated by previous comments)

Goal: Compare the metrics. In particular, find minimal weights (a, b)
such that the identity is a contraction from Bottleneck 2 to Bottleneck 1.
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Bottleneck metric on the Auslander-Reiten Quiver

Stability Theorem
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Bottleneck metric on the Auslander-Reiten Quiver

Stability Theorem

T is the "longest of the shortests sides.” Here T equals 2.
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Bottleneck metric on the Auslander-Reiten Quiver

Stability Theorem

Bottleneck 1

Bottleneck 2 Interleaving

(2, T) is the minimal weight such that both arrows are contractions. For
many orientations, Bottleneck 1 equals Interleaving.
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Bottleneck metric on the Auslander-Reiten Quiver

THANK YOU!
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