Representation varieties of algebras with nodes

András Cristian Lőrincz

Purdue University

Joint work with Ryan Kinser

Conference on Geometric Methods in Representation Theory, University of Iowa, November 2018

Basics

• k is an algebraically closed field. Mat(m, n) denotes the variety of matrices with m rows, n columns, and entries in k.

Basics

- k is an algebraically closed field. Mat(m, n) denotes the variety of matrices with m rows, n columns, and entries in k.
- Given a quiver Q and dimension vector $\mathbf{d} \colon Q_0 \to \mathbb{Z}_{\geq 0}$, we study the representation variety

$$\operatorname{\mathsf{rep}}_Q(\operatorname{\mathbf{d}}) = \prod_{lpha \in Q_1} \operatorname{\mathsf{Mat}}(\operatorname{\mathbf{d}}(hlpha),\operatorname{\mathbf{d}}(tlpha))$$

Basics

- k is an algebraically closed field. Mat(m, n) denotes the variety of matrices with m rows, n columns, and entries in k.
- Given a quiver Q and dimension vector $\mathbf{d}\colon Q_0 \to \mathbb{Z}_{\geq 0}$, we study the representation variety

$$\operatorname{\mathsf{rep}}_Q(\operatorname{\mathbf{d}}) = \prod_{lpha \in Q_1} \operatorname{\mathsf{Mat}}(\operatorname{\mathbf{d}}(hlpha),\operatorname{\mathbf{d}}(tlpha))$$

• The action of the base change group

$$GL(\mathbf{d}) = \prod_{z \in Q_0} GL(\mathbf{d}(z))$$

acts on $rep_Q(\mathbf{d})$ by

$$g \cdot M = (g_{h\alpha} M_{\alpha} g_{t\alpha}^{-1})_{\alpha \in Q_1},$$

where $g=(g_z)_{z\in Q_0}\in GL(\mathbf{d})$ and $M=(M_\alpha)_{\alpha\in Q_1}\in \operatorname{rep}_Q(\mathbf{d})$.

• For an algebra $A = \mathbb{k}Q/I$ with corresponding quiver with relations (Q, R) we consider the representation variety

$$\operatorname{rep}_{A}(\operatorname{\mathbf{d}}) = \{ M \in \prod_{\alpha \in Q_{1}} \operatorname{\mathsf{Mat}}(\operatorname{\mathbf{d}}(h\alpha),\operatorname{\mathbf{d}}(t\alpha)) \mid M(r) = 0, \, \forall r \in R \}$$

• For an algebra $A = \mathbb{k}Q/I$ with corresponding quiver with relations (Q, R) we consider the representation variety

$$\mathsf{rep}_{\mathcal{A}}(\mathbf{d}) = \{ M \in \prod_{\alpha \in \mathcal{Q}_1} \mathsf{Mat}(\mathbf{d}(h\alpha), \mathbf{d}(t\alpha)) \mid M(r) = 0, \, \forall r \in R \}$$

• Under the action of $GL(\mathbf{d})$, orbits correspond to isomorphism classes of representations.

• For an algebra $A = \mathbb{k}Q/I$ with corresponding quiver with relations (Q, R) we consider the representation variety

$$\mathsf{rep}_{A}(\mathbf{d}) = \{ M \in \prod_{\alpha \in \mathcal{Q}_{1}} \mathsf{Mat}(\mathbf{d}(h\alpha), \mathbf{d}(t\alpha)) \mid M(r) = 0, \, \forall r \in R \}$$

- Under the action of $GL(\mathbf{d})$, orbits correspond to isomorphism classes of representations.
- In general $rep_A(\mathbf{d})$ is not irreducible. We want to study its irreducible components, orbit closures, and their singularities.

• For an algebra $A = \mathbb{k}Q/I$ with corresponding quiver with relations (Q, R) we consider the representation variety

$$\mathsf{rep}_{A}(\mathbf{d}) = \{ M \in \prod_{\alpha \in \mathcal{Q}_{1}} \mathsf{Mat}(\mathbf{d}(h\alpha), \mathbf{d}(t\alpha)) \mid M(r) = 0, \, \forall r \in R \}$$

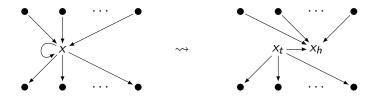
- Under the action of $GL(\mathbf{d})$, orbits correspond to isomorphism classes of representations.
- In general $rep_A(\mathbf{d})$ is not irreducible. We want to study its irreducible components, orbit closures, and their singularities.
- Determine generic decompositions, and moduli space decompositions of semi-stable representations.

Nodes

A *node* of an algebra $A = \mathbb{k}Q/I$ is a vertex x of Q such that all the paths of length 2 passing strictly through x belong to I.

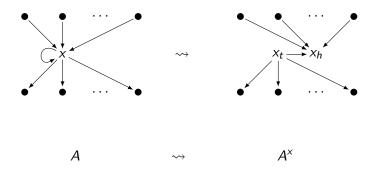
Nodes

A node of an algebra $A = \mathbb{k}Q/I$ is a vertex x of Q such that all the paths of length 2 passing strictly through x belong to I. A node x of A can be *split* by the following operation around x:



Nodes

A node of an algebra $A = \mathbb{k}Q/I$ is a vertex x of Q such that all the paths of length 2 passing strictly through x belong to I. A node x of A can be *split* by the following operation around x:



Theorem (Martínez-Villa '80)

There is a bijection between the set of isomorphism classes of indecomposable representations of A and the set of isomorphism classes of indecomposable representations of A^{\times} with the simple representation supported at x_h removed.

Theorem (Martínez-Villa '80)

There is a bijection between the set of isomorphism classes of indecomposable representations of A and the set of isomorphism classes of indecomposable representations of A^{\times} with the simple representation supported at \times_h removed.

Question: What is the relation between the geometry of representation varieties of A and A^{\times} ?

Theorem (Martínez-Villa '80)

There is a bijection between the set of isomorphism classes of indecomposable representations of A and the set of isomorphism classes of indecomposable representations of A^{\times} with the simple representation supported at \times_h removed.

Question: What is the relation between the geometry of representation varieties of A and A^{\times} ?

Example

Take the following quiver with relation ab = 0

$$1 \xrightarrow{a} 2 \xrightarrow{b} 3$$

Splitting vertex 2, we get two quivers $1 \to 2_h \qquad 2_t \to 3$; representation varieties for these are affine spaces. However, representation varieties for the original quiver have multiple irreducible components and are singular.

Setup

Assume $x \in Q_0$ is a node of A, and take r with $0 \le r \le \mathbf{d}(x)$. We denote by \mathbf{d}_r^x the dimension vector of Q^x obtained by putting $\mathbf{d}^x(x_h) = r$, $\mathbf{d}^x(x_t) = \mathbf{d}(x) - r$, and at the rest of the vertices \mathbf{d}^x coincides with \mathbf{d} .

Setup

Assume $x \in Q_0$ is a node of A, and take r with $0 \le r \le \mathbf{d}(x)$. We denote by \mathbf{d}_r^x the dimension vector of Q^x obtained by putting $\mathbf{d}^x(x_h) = r$, $\mathbf{d}^x(x_t) = \mathbf{d}(x) - r$, and at the rest of the vertices \mathbf{d}^x coincides with \mathbf{d} . We have $i : \operatorname{rep}_{A^x}(\mathbf{d}_r^x) \hookrightarrow \operatorname{rep}_A(\mathbf{d})$:

$$i(M)_{\alpha} = \begin{cases} M_{\alpha} & t\alpha \neq x \neq h\alpha \\ \left[\begin{smallmatrix} M_{\alpha} \\ 0 \end{smallmatrix} \right] & h\alpha = x \text{ and } t\alpha \neq x, \\ \left[\begin{smallmatrix} 0 & M_{\alpha} \\ 0 & 0 \end{smallmatrix} \right] & t\alpha = x \text{ and } h\alpha \neq x, \\ \left[\begin{smallmatrix} 0 & M_{\alpha} \\ 0 & 0 \end{smallmatrix} \right] & t\alpha = x \text{ and } h\alpha = x. \end{cases}$$

Setup

Assume $x \in Q_0$ is a node of A, and take r with $0 \le r \le \mathbf{d}(x)$. We denote by \mathbf{d}_r^x the dimension vector of Q^x obtained by putting $\mathbf{d}^x(x_h) = r$, $\mathbf{d}^x(x_t) = \mathbf{d}(x) - r$, and at the rest of the vertices \mathbf{d}^x coincides with \mathbf{d} . We have $i : \operatorname{rep}_{A^x}(\mathbf{d}_r^x) \hookrightarrow \operatorname{rep}_A(\mathbf{d})$:

$$i(M)_{\alpha} = \begin{cases} M_{\alpha} & t\alpha \neq x \neq h\alpha \\ \left[\begin{smallmatrix} M_{\alpha} \\ 0 \end{smallmatrix} \right] & h\alpha = x \text{ and } t\alpha \neq x, \\ \left[\begin{smallmatrix} 0 & M_{\alpha} \\ 0 & 0 \end{smallmatrix} \right] & t\alpha = x \text{ and } h\alpha \neq x, \\ \left[\begin{smallmatrix} 0 & M_{\alpha} \\ 0 & 0 \end{smallmatrix} \right] & t\alpha = x \text{ and } h\alpha = x. \end{cases}$$

Let $P_r \leq GL(\mathbf{d}(x))$ be the parabolic subgroup of block upper triangular matrices block size r and $\mathbf{d}(x) - r$. Let $P_r^{\times}(\mathbf{d}) \leq GL(\mathbf{d})$ be the subgroup where the factor $GL(\mathbf{d}(x))$ is replaced by P_r . The variety $\operatorname{rep}_{\mathcal{A}^{\times}}(\mathbf{d}_r^{\times})$ is in fact $P_r^{\times}(\mathbf{d})$ -stable subvariety of $\operatorname{rep}_{\mathcal{A}}(\mathbf{d}_r^{\times})$!

Given subset $S \subset \operatorname{rep}_A(\operatorname{\mathbf{d}})$, and a node x, we define the x-rank of S to be the number

$$r_x(S) := \max_{M \in S} \left\{ \operatorname{rank} \bigoplus_{h\alpha = x} M_\alpha : \bigoplus_{h\alpha = x} M_{t\alpha} o M_x
ight\}.$$

Given subset $S \subset \operatorname{rep}_A(\mathbf{d})$, and a node x, we define the x-rank of S to be the number

$$r_x(S) := \max_{M \in S} \left\{ \operatorname{rank} \bigoplus_{h\alpha = x} M_\alpha : \bigoplus_{h\alpha = x} M_{t\alpha} \to M_x \right\}.$$

Proposition

Let $0 \le r \le \mathbf{d}(x)$ and C a $GL(\mathbf{d}_r^x)$ -stable irreducible closed subvariety of $\operatorname{rep}_{A^x}(\mathbf{d}_r^x)$ with $r_{x_t}(C) = r$. Then the saturation $GL(\mathbf{d}) \cdot C$ is an irreducible closed subvariety of $\operatorname{rep}_A(\mathbf{d})$, and the following map is a proper birational morphism of $GL(\mathbf{d})$ -varieties:

$$\Psi_C : GL(\mathbf{d}) \times_{P_*^*(\mathbf{d})} C \to GL(\mathbf{d}) \cdot C, (g, M) \mapsto g \cdot M.$$

Main Correspondence

Theorem (Kinser, L. '18)

For each $0 \le r \le \mathbf{d}(x)$, the maps below are mutually inverse, inclusion-preserving bijections.

Main Correspondence

Theorem (Kinser, L. '18)

For each $0 \le r \le \mathbf{d}(x)$, the maps below are mutually inverse, inclusion-preserving bijections.

$$\left\{ \begin{array}{l} \textit{irreducible closed} \\ \textit{GL}(\mathbf{d}_r^{\mathsf{x}}) \textit{-stable subvarieties} \\ \textit{of } \mathsf{rep}_{\mathcal{A}^{\mathsf{x}}}(\mathbf{d}_r^{\mathsf{x}}) \textit{ of } x_h \textit{-rank } r \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \textit{irreducible closed} \\ \textit{GL}(\mathbf{d}) \textit{-stable subvarieties} \\ \textit{of } \mathsf{rep}_{\mathcal{A}}(\mathbf{d}) \textit{ of } x \textit{-rank } r \end{array} \right\}$$

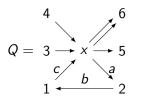
$$C \qquad \mapsto \qquad \qquad \textit{GL}(\mathbf{d}) \cdot C$$

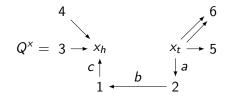
$$D \cap \mathsf{rep}_{\mathcal{A}^{\mathsf{x}}}(\mathbf{d}_r^{\mathsf{x}}) \qquad \leftarrow \qquad D$$

In particular, the irreducible components of representation varieties of A are saturations of irreducible components of representation varieties of A^{\times} .

An Example

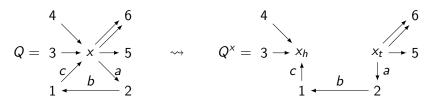
Consider the algebra $A = \mathbb{k}Q/I$, where I is generated by relations declaring that x is a node, along with the relation abc = 0.





An Example

Consider the algebra $A = \mathbb{k}Q/I$, where I is generated by relations declaring that x is a node, along with the relation abc = 0.



Let $\mathbf{d}=(3,2,2,1,3,3,3)$ (where $\mathbf{d}(x)$ is the last entry). The study of the components of $\operatorname{rep}_A(\mathbf{d})$ reduces to type \mathbb{A}_4 quiver with the following dimension vector, for r=0,1,2,3

$$(3-r) \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} r$$

$$(3-r) \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} r$$
 $abc = 0$

• r = 0, one component C_0

$$(3-r) \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} r$$

$$abc = 0$$

- r=0, one component C_0
- r = 1, two components:

$$C_1 - (1, 1, 1, 0)^{\oplus 2} \oplus (0, 0, 1, 1)$$

 $C'_1 - (1, 0, 0, 0) \oplus (1, 1, 1, 0) \oplus (0, 1, 1, 1) \oplus (0, 0, 1, 0)$

$$(3-r) \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} r$$

$$abc = 0$$

- r=0, one component C_0
- r=1, two components: $C_1-(1,1,1,0)^{\oplus 2}\oplus (0,0,1,1) \ C_1'-(1,0,0,0)\oplus (1,1,1,0)\oplus (0,1,1,1)\oplus (0,0,1,0)$
- r=2, two components: $C_2-(1,1,1,0)\oplus (0,1,1,1)\oplus (0,0,1,1)$ $C_2'-(1,0,0,0)\oplus (0,1,1,1)^{\oplus 2}\oplus (0,0,1,0)$

$$(3-r) \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} r$$

$$abc = 0$$

- r = 0, one component C_0
- r=1, two components: $C_1-(1,1,1,0)^{\oplus 2}\oplus (0,0,1,1) \ C_1'-(1,0,0,0)\oplus (1,1,1,0)\oplus (0,1,1,1)\oplus (0,0,1,0)$
- r=2, two components: $C_2-(1,1,1,0)\oplus (0,1,1,1)\oplus (0,0,1,1) \ C_2'-(1,0,0,0)\oplus (0,1,1,1)^{\oplus 2}\oplus (0,0,1,0)$
- r = 3, one component C_3 .

$$(3-r) \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} r$$

$$abc = 0$$

- r = 0, one component C_0
- r=1, two components: $C_1-(1,1,1,0)^{\oplus 2}\oplus (0,0,1,1) \ C_1'-(1,0,0,0)\oplus (1,1,1,0)\oplus (0,1,1,1)\oplus (0,0,1,0)$
- r=2, two components: $C_2-(1,1,1,0)\oplus (0,1,1,1)\oplus (0,0,1,1) \ C_2'-(1,0,0,0)\oplus (0,1,1,1)^{\oplus 2}\oplus (0,0,1,0)$
- r = 3, one component C_3 .

Under saturation, C'_1 is contained in C_2 and C'_2 is contained in C_3 .

$$(3-r) \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} r$$

$$abc = 0$$

- r = 0, one component C_0
- r=1, two components: $C_1-(1,1,1,0)^{\oplus 2}\oplus (0,0,1,1) \ C_1'-(1,0,0,0)\oplus (1,1,1,0)\oplus (0,1,1,1)\oplus (0,0,1,0)$
- r=2, two components: $C_2-(1,1,1,0)\oplus (0,1,1,1)\oplus (0,0,1,1) \ C_2'-(1,0,0,0)\oplus (0,1,1,1)^{\oplus 2}\oplus (0,0,1,0)$
- r = 3, one component C_3 .

Under saturation, C'_1 is contained in C_2 and C'_2 is contained in C_3 . The irreducible components of $\operatorname{rep}_A(\mathbf{d})$ are given by saturations of C_0 , C_1 , C_2 , C_3 .

Radical-square algebras

Theorem (Kinser, L. '18)

Take $A = \mathbb{k}Q/\operatorname{rad}^2(\mathbb{k}Q)$ and a dimension vector \mathbf{d} . For a dimension vector $\mathbf{r} \leq \mathbf{d}$, let $C_{\mathbf{r}}$ be the closure of the set of representations $M \in \operatorname{rep}_A(\mathbf{d})$ such that $r_x(M) = \mathbf{r}(x)$, for all $x \in Q_0$. Then $C_{\mathbf{r}}$ is irreducible. Furthermore, set $\mathbf{s} = \mathbf{d} - \mathbf{r}$, and for $x \in Q_0$ let I_x be the number of loops at x and put

$$u_x(\mathbf{r}) = \sum_{h\alpha = x} \mathbf{s}(t\alpha) - \mathbf{r}(x), \quad \text{ and } \quad v_x(\mathbf{r}) = \sum_{t\alpha = x} \mathbf{r}(h\alpha) - \mathbf{s}(x).$$

Then the irreducible components of $\operatorname{rep}_A(\mathbf{d})$ are given precisely by the irreducibles $C_{\mathbf{r}}$ for which \mathbf{r} satisfies the following for all $x \in Q_0$:

$$u_x(\mathbf{r}) \geq 0$$
, and when $u_x(\mathbf{r}) > l_x$ then $v_x(\mathbf{r}) \geq 0$.

Radical-square algebras

Theorem (Kinser, L. '18)

Take $A = \mathbb{k}Q/\operatorname{rad}^2(\mathbb{k}Q)$ and a dimension vector \mathbf{d} . For a dimension vector $\mathbf{r} \leq \mathbf{d}$, let $C_{\mathbf{r}}$ be the closure of the set of representations $M \in \operatorname{rep}_A(\mathbf{d})$ such that $r_x(M) = \mathbf{r}(x)$, for all $x \in Q_0$. Then $C_{\mathbf{r}}$ is irreducible. Furthermore, set $\mathbf{s} = \mathbf{d} - \mathbf{r}$, and for $x \in Q_0$ let I_x be the number of loops at x and put

$$u_x(\mathbf{r}) = \sum_{h\alpha = x} \mathbf{s}(t\alpha) - \mathbf{r}(x), \quad \text{ and } \quad v_x(\mathbf{r}) = \sum_{t\alpha = x} \mathbf{r}(h\alpha) - \mathbf{s}(x).$$

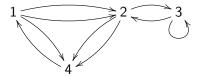
Then the irreducible components of $\operatorname{rep}_A(\mathbf{d})$ are given precisely by the irreducibles $C_{\mathbf{r}}$ for which \mathbf{r} satisfies the following for all $x \in Q_0$:

$$u_x(\mathbf{r}) \geq 0$$
, and when $u_x(\mathbf{r}) > l_x$ then $v_x(\mathbf{r}) \geq 0$.

This is complementary to a representation-theoretic algorithm given by [Bleher, Chinburg, Huisgen-Zimmermann '15]

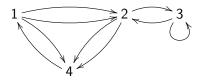
Example

Consider the radical-square algebra A (all compositions zero)



Example

Consider the radical-square algebra A (all compositions zero)



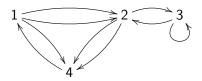
For $\mathbf{d} = (2, 2, 2, 2)$, rep_A(\mathbf{d}) has 13 irreducible components given by the rank sequences:

$$(0,0,1,2), (0,0,2,2), (0,1,1,2), (0,2,0,2), (0,2,1,2), (1,0,1,1), (1,0,2,1)$$

 $(1,1,1,1), (1,2,0,1), (1,2,1,1), (2,0,2,0), (2,1,1,0), (2,2,0,0)$

Example

Consider the radical-square algebra A (all compositions zero)



For $\mathbf{d} = (2, 2, 2, 2)$, $\operatorname{rep}_{A}(\mathbf{d})$ has 13 irreducible components given by the rank sequences:

$$(0,0,1,2), (0,0,2,2), (0,1,1,2), (0,2,0,2), (0,2,1,2), (1,0,1,1), (1,0,2,1)$$

 $(1,1,1,1), (1,2,0,1), (1,2,1,1), (2,0,2,0), (2,1,1,0), (2,2,0,0)$

For $\mathbf{d} = (50, 50, 50, 50)$, we have 60501 irreducible components.

Generic decomposition

Theorem (Kac '80, '82; de la Peña '91; Crawley-Boevey, Schröer '02)

Any irreducible component $C \subseteq \operatorname{rep}_A(\mathbf{d})$ satisfies a Krull-Schmidt type decomposition

$$C = \overline{C_1 \oplus \ldots \oplus C_k}$$

for some indecomposable irreducible components $C_i \subseteq \operatorname{rep}_{\mathcal{A}}(\mathbf{d}_i)$.

Generic decomposition

Theorem (Kac '80, '82; de la Peña '91; Crawley-Boevey, Schröer '02)

Any irreducible component $C \subseteq \operatorname{rep}_A(\mathbf{d})$ satisfies a Krull-Schmidt type decomposition

$$C = \overline{C_1 \oplus \ldots \oplus C_k}$$

for some indecomposable irreducible components $C_i \subseteq \operatorname{rep}_A(\mathbf{d}_i)$.

Theorem (Kinser, L. '18)

Let $C \subseteq \operatorname{rep}_A(\operatorname{\mathbf{d}})$ be an irreducible component, $r = r_X(C)$ and $C^x = C \cap \operatorname{rep}_{A^x}(\operatorname{\mathbf{d}}_r^x)$. Let $C^x = \overline{C_1^x \oplus \cdots \oplus C_k^x}$ be the generic decomposition of the irreducible component C^x in A^x . Then $C = \overline{C_1 \oplus \cdots \oplus C_k}$ is the generic decomposition of C, where $C_i^x = GL(\operatorname{\mathbf{d}}) \cdot C$.

Singularities

Assume char k = 0.

Theorem (Kinser, L. '18)

Let C be $GL(\mathbf{d}_r^{\mathsf{x}})$ -stable irreducible closed subvariety of $\operatorname{rep}_{A^{\mathsf{x}}}(\mathbf{d}_r^{\mathsf{x}})$, for some $0 \le r \le \mathbf{d}(x)$. If C is normal (resp. has rational singularities), then the same is true for the variety $GL(\mathbf{d}) \cdot C \subseteq \operatorname{rep}_A(\mathbf{d})$.

Singularities

Assume char k = 0.

Theorem (Kinser, L. '18)

Let C be $GL(\mathbf{d}_r^{\mathsf{x}})$ -stable irreducible closed subvariety of $\operatorname{rep}_{A^{\mathsf{x}}}(\mathbf{d}_r^{\mathsf{x}})$, for some $0 \le r \le \mathbf{d}(x)$. If C is normal (resp. has rational singularities), then the same is true for the variety $GL(\mathbf{d}) \cdot C \subseteq \operatorname{rep}_A(\mathbf{d})$.

For the proof we use a result of [Kempf '76].

Singularities

Assume char k = 0.

Theorem (Kinser, L. '18)

Let C be $GL(\mathbf{d}_r^{\times})$ -stable irreducible closed subvariety of $\operatorname{rep}_{A^{\times}}(\mathbf{d}_r^{\times})$, for some $0 \le r \le \mathbf{d}(x)$. If C is normal (resp. has rational singularities), then the same is true for the variety $GL(\mathbf{d}) \cdot C \subseteq \operatorname{rep}_A(\mathbf{d})$.

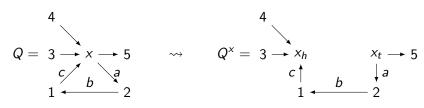
For the proof we use a result of [Kempf '76].

Corollary

Let A be a finite-dimensional k-algebra with $\operatorname{rad}^2 A = 0$. Then for any dimension vector \mathbf{d} , any irreducible component $C \subseteq \operatorname{rep}_A(\mathbf{d})$ has rational singularities (and is thus also normal, and Cohen-Macaulay).

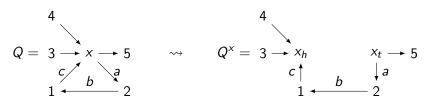
Example with orbit closures

Consider the following algebra $A = \mathbb{k}Q/I$. Again I is generated by relations declaring that x is a node, along with the relation abc = 0.



Example with orbit closures

Consider the following algebra $A = \mathbb{k}Q/I$. Again I is generated by relations declaring that x is a node, along with the relation abc = 0.



Orbit closures of A^x are orbit closures for a type $\mathbb D$ quiver, and thus have rational singularities by [Bobiński-Zwara '02]. Therefore, all orbit closures for A have rational singularities.

Let
$$A$$
 be given by the quiver $\bullet \xrightarrow{a_1} \bullet \xrightarrow{b_1 \atop b_2} \bullet \xrightarrow{c_1 \atop c_2} \bullet$
with relations $a_1b_1 = b_1c_1 = b_1c_2 = b_2c_1 = b_2c_2 = b_3c_3 = 0$.

Let A be given by the quiver $\bullet \xrightarrow{a_1} \bullet \xrightarrow{b_1 \atop b_2} \bullet \xrightarrow{c_1 \atop c_2} \bullet \bullet$

with relations $a_1b_1 = b_1c_1 = b_1c_2 = b_2c_1 = b_2c_2 = b_3c_3 = 0$.

A has no nodes, but we can separate relations, and so a representation variety of A can be written as a product of representation varieties of

$$\bullet \xrightarrow{a_1} \bullet \xrightarrow{b_1} \xrightarrow{b_2} \bullet \xrightarrow{c_1} \bullet \text{ and } \bullet \xrightarrow{b_3} \bullet \xrightarrow{c_3} \bullet$$

Let A be given by the quiver $\bullet \xrightarrow{a_1} \bullet \xrightarrow{b_1 \atop b_2} \bullet \xrightarrow{c_1 \atop c_2 \atop c_3} \bullet$

with relations $a_1b_1 = b_1c_1 = b_1c_2 = b_2c_1 = b_2c_2 = b_3c_3 = 0$.

 $\cal A$ has no nodes, but we can separate relations, and so a representation variety of $\cal A$ can be written as a product of representation varieties of

$$\bullet \xrightarrow{a_1} \bullet \xrightarrow{b_1} \xrightarrow{b_2} \bullet \xrightarrow{c_1} \bullet \text{ and } \bullet \xrightarrow{b_3} \bullet \xrightarrow{c_3} \bullet$$

Both quivers have now nodes. Splitting the node in the former, we obtain the product of an affine space with a representation variety of

$$\bullet \xrightarrow{a_1} \bullet \xrightarrow{b_1} \bullet$$

Let A be given by the quiver $\bullet \xrightarrow{a_1} \bullet \xrightarrow{b_1 \atop b_2} \bullet \xrightarrow{c_1 \atop c_2} \bullet$

with relations $a_1b_1 = b_1c_1 = b_1c_2 = b_2c_1 = b_2c_2 = b_3c_3 = 0$.

 $\cal A$ has no nodes, but we can separate relations, and so a representation variety of $\cal A$ can be written as a product of representation varieties of

$$\bullet \xrightarrow{a_1} \bullet \xrightarrow{b_1} \xrightarrow{b_2} \bullet \xrightarrow{c_1} \bullet \text{ and } \bullet \xrightarrow{b_3} \bullet \xrightarrow{c_3} \bullet$$

Both quivers have now nodes. Splitting the node in the former, we obtain the product of an affine space with a representation variety of

$$\bullet \xrightarrow{a_1} \bullet \xrightarrow{b_1} \bullet$$

We can drop b_2 , and then split the middle, yielding affine spaces. Hence all representation varieties of A have rational singularities.

Semi-stable representations

Choose a weight $\theta \in \mathbb{Z}Q_0$ with $\theta \cdot \mathbf{d} = 0$. By [King '94], the θ -semistable points of $\operatorname{rep}_A(\mathbf{d})$ are

$$\operatorname{\mathsf{rep}}_{\mathcal{A}}(\mathbf{d})^{\operatorname{\mathsf{ss}}}_{\theta} = \{ M \in \operatorname{\mathsf{rep}}_{\mathcal{A}}(\mathbf{d}) \mid \forall N \leq M, \ \theta \cdot \underline{\dim} N \leq 0 \}.$$

We have a quotient map $\operatorname{rep}_{\mathcal{A}}(\mathbf{d})^{ss}_{\theta} \twoheadrightarrow \mathcal{M}(\mathbf{d})^{ss}_{\theta}$ by GIT.

Semi-stable representations

Choose a weight $\theta \in \mathbb{Z}Q_0$ with $\theta \cdot \mathbf{d} = 0$. By [King '94], the θ -semistable points of $\operatorname{rep}_A(\mathbf{d})$ are

$$\operatorname{\mathsf{rep}}_{A}(\mathbf{d})_{\theta}^{\operatorname{\mathsf{ss}}} = \{ M \in \operatorname{\mathsf{rep}}_{A}(\mathbf{d}) \mid \forall N \leq M, \ \theta \cdot \underline{\dim} N \leq 0 \}.$$

We have a quotient map $\operatorname{rep}_A(\mathbf{d})^{ss}_{\theta} \twoheadrightarrow \mathcal{M}(\mathbf{d})^{ss}_{\theta}$ by GIT.

Let C be an irreducible component of $\operatorname{rep}_A(\operatorname{\mathbf{d}})$ with $C^{ss}_{\theta} \neq \emptyset$. Consider a collection $\{C_i \subseteq \operatorname{rep}_A(\operatorname{\mathbf{d}}_i)\}_{i=1}^k$ of irreducible components, each with a nonempty subset of θ -stable points, $C_i \neq C_j$ for $i \neq j$, and also consider some multiplicities $m_i \in \mathbb{Z}_{>0}$, for $i=1,\ldots,k$. We say that $\{(C_i,m_i)\}_{i=1}^k$ is a θ -stable decomposition of C if, for a general representation $M \in C^{ss}_{\theta}$, its corresponding stable factors are in C_i with multiplicity m_i , and write

$$C = m_1 C_1 + \ldots + m_k C_k.$$

Application to decompositions of moduli spaces

Normality of irreducible components is important also for studying moduli spaces of semi-stable representations.

Theorem (Chindris, Kinser '18)

Let $C \subseteq \operatorname{rep}_A(\mathbf{d})^{ss}_{\theta}$ be an irreducible component with $C^{ss}_{\theta} \neq \emptyset$. There exists $C = m_1 C_1 + \ldots + m_k C_k$ a θ -stable decomposition of C where $C_i \subseteq \operatorname{rep}_A(\mathbf{d}_i)$, $1 \leq i \leq k$, are pairwise distinct θ -stable irreducible components. Moreover, if $\mathcal{M}(C)^{ss}_{\theta}$ is an irreducible component of $\mathcal{M}(\mathbf{d})^{ss}_{\theta}$, then there is a natural morphism

$$\Psi \colon \mathit{S}^{\mathit{m}_{1}}(\mathcal{M}(\mathit{C}_{1})_{\theta}^{\mathit{ss}}) \times \ldots \times \mathit{S}^{\mathit{m}_{r}}(\mathcal{M}(\mathit{C}_{k})_{\theta}^{\mathit{ss}}) \to \mathcal{M}(\mathit{C})_{\theta}^{\mathit{ss}}$$

which is finite, and birational. In particular, if C is normal then Ψ is an isomorphism.