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Invariant Theory

K = C base field

G reductive algebraic group (e.g., GL,, semi-simple, finite,...)
V' n-dimensional representation of G

C[V] ring of polynomial functions on V
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Invariant Theory

K = C base field

G reductive algebraic group (e.g., GL,, semi-simple, finite,...)
V' n-dimensional representation of G

C[V] ring of polynomial functions on V

G acts on C[V]

Definition
C[V]® ={f €C[V] |Vg € Gg - f = f} invariant ring

Theorem (Hilbert 1890)
C[V]C is a finitely generated C-algebra

Harm Derksen Upper and Lower Degree Bounds for Generating Invariants



Bc(V) = min{d | C[V]® generated by invariants of degree < d}
«0>» «Fr «E» « E>» = Q>
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Degree Bounds

Definition
Bc(V) = min{d | C[V]® generated by invariants of degree < d}
When do we have “polynomial” bounds for Sg(V)?
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Degree Bounds

Definition

Bc(V) = min{d | C[V]® generated by invariants of degree < d}
When do we have “polynomial” bounds for Sg(V)?
Example: SLy acts on Vy = {agX? 4+ a1 X971Y + ... + 2, Y9}
(binary forms of degree d)

K[Vd] = K[ao, a1y ...y ad]
K[\/Q]SL2 = K[af — 42032]
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Degree Bounds

Definition

Bc(V) = min{d | C[V]® generated by invariants of degree < d}
When do we have “polynomial” bounds for Sg(V)?
Example: SLy acts on Vy = {agX? 4+ a1 X971Y + ... + 2, Y9}
(binary forms of degree d)

K[Vd] = K[ao, a1y ...y ad]
K[\/Q]SL2 = K[a% — 42032]

Theorem (C. Jordan 1876)
Bsi,(Va) < d°
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Degree Bounds

Definition
Bc(V) = min{d | C[V]® generated by invariants of degree < d}
When do we have “polynomial” bounds for Sg(V)?

Example: SLy acts on Vy = {agX? 4+ a1 X971Y + ... + 2, Y9}
(binary forms of degree d)
K[Vd] = K[ao, dly ..., ad]
K[VQ]SL2 = K[a% — 43032]

/BSLz(Vd) S d6
Example: G finite, V representation of G

Bc(V) < |G| (constant bound if G fixed)
(=} [l = = £ HaAw




Example: T = (C*)™ m-dimensional torus

for t = (t1,...,tm) € T, a € Z™ we write t? = t;* - - t2m

«0>» «Fr «E» « E>» = Q>



Polynomial Bound for Tori

Example: T = (C*)™ m-dimensional torus

for t = (t1,...,tm) € T, a € Z™ we write t? = t;* - - t2m
V = K" representations with weights wy,...,w, € Z™
t-(x1, %2, .., %n) = (t%%q, . .., t97X,)
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Polynomial Bound for Tori

Example: T = (C*)™ m-dimensional torus

for t = (t1,...,tm) € T, a € Z™ we write t? = t;* - - t2m
V = K" representations with weights wy,...,w, € Z™
t(x1,x2, ..., xn) = (t“x1, ..., t7xp)

Br(V) < nm!vol(C), where C is the convex hull of wy, .
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Polynomial Bound for Tori

Example: T = (C*)™ m-dimensional torus
for t = (t1,...,tm) € T, a € Z™ we write t? = t;* - - t2m
V = K" representations with weights wy,

ce,wpEZM
t(x1,x2, ..., xn) = (t“x1, ..., t7xp)

Br(V) < nm!vol(C), where C is the convex hull of wy, .
if T (and m) are fixed, then

Br(V) = O(nL™)
where L = max{||wi]], ..., |lwnl}

.y Wn
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Polynomial Bounds for Fixed G

V' n-dim representation of G
N ={v e V|V¥feC[V]® f(v) = f(0)} null cone

Definition
o6(V) = min{d | N defined by invariants of degree < d}
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Polynomial Bounds for Fixed G

V' n-dim representation of G
N ={ve V|V¥feC[V]® f(v) = f(0)} null cone

Definition
06(V) = min{d | NV defined by invariants of degree < d}

Be(V) < max{2, %nag(V)z}

o [l = = E 9DHAE



Polynomial Bounds for Fixed G

T C G° max torus of rank r, w1, ... ,wp weights of T acting on V
L = max{|lwsl],..., [lwnll}
oc(V) = O(L™), where m = dim G
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Polynomial Bounds for Fixed G

T C G° max torus of rank r, w1, ... ,wp weights of T acting on V
L = max{|lwsl],..., [lwnll}

oc(V) = O(L™), where m = dim G

Be(V) = O(nL?™)

o [l = = E 9DHAE



Non-Constant Symmetric Group

G = 5, acts on V,, = C" by permutations
C[V,]>" = Cley, .. ., €], where

€k = E Xi1Xi2 e Xl'k

i <ip<---<ij

is k-th elementary symmetric function, so s, (V,) = n
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Non-Constant Symmetric Group

C[V,]°" = Cley,

G = 5, acts on V,, = C" by permutations
..., €n], where

e =

Z Xil Xi2 e Xik
i <ip<---<ij
is k-th elementary symmetric function, so s, (V,) = n
if G C Sy, then Bg(Vn) < max{n, (5)}
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Non-Constant Symmetric Group
G = 5, acts on V,, = C" by permutations
C[V,a]*>" = Cley, ..., €n], where

e =

>

Xil Xi2 e Xik
N<ip< <y
is k-th elementary symmetric function, so s, (V,) = n
if G C Sy, then Bg(Vn) < max{n, (5)}
For example, for fixed d and S, C S,s we get
—_——

Bs, (Vo ® - ® Vi) = Bs, (Via) = O(n*)
d
(for d = 2 one gets graph invariants)
_ Upper and Lower Degree Bounds for Generating Invariants
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Matrix Invariants

GL, acts on Mat, , by conjugation
C[Mat, ,]° generated by invariants of the form
(Al, 500 g As) d TIf(A,'lA,'2 oo -A,',)
with r < n?, so BeL,(Mat;, ,) < n?

[} (=) = E
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Matrix Invariants

GL, acts on Mat, , by conjugation

Theorem (Procesi 1976, Razmyslov 1974)

C[I\/Iatfm]GL" generated by invariants of the form
(Al7 500 7AS) — TI’(A,’IA,'2 000 A,‘r)
with r < n?, so BgL,(Mat;, ,) < n?

SL, x SL,, acts on Mat, , by left-right multiplication
Theorem (D.-Makam 2015)

C[I\/Iatfw]SL" is generated by invariants of the form
(Ar,.. ., As) —det(A1@ T+ + A ® Ts)
with T1,..., Ts € Maty 4 and d < n® and
BsL, x sL,(Mat],) < n®
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Non-Constant Torus Action

suppose that T, = (C*)" acts on W, = C"*! with weights

(=2,0,...,0)
(1,-2,0,...,0)
(0,1,-2,...,0)
(0,...,0,1,-2)

(0,...,0,0,1)
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Non-Constant Torus Action

suppose that T, = (C*)" acts on W, = C"*! with weights

(=2,0,...,0)
(1,-2,0,...,0)
(0,1,-2,...,0)
(0,...,0,1,-2)

(0,...,0,0,1)

we have
CWa] ™ = Clxxg s -+ xp

and B1,(W,) =21 —1

Exponential Growth!!
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Suppose that G, = SL3, acts on V,, = S3(C3") be the space of
cubic forms
B6, (Vi) > 5(4" - 1)

«40O> 4Fr «=)>» « =) = Q>




Exponential Lower Bounds for Cubic Forms

Suppose that G, = SL3, acts on V,, = S3(C3") be the space of
cubic forms

Be,(Va) > 3(4" — 1)

we use the Grosshans principle to reduce the theorem to finding
exponential lower bounds for the maximal torus T, C G,

we sketch the proof

o = = = = 9Dae



Grosshans Principle

V' a representation of G, H C G subgroup
H acts by right multiplication on G: h-g = gh™!
G acts on the left on G and on V
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Grosshans Principle

V' a representation of G, H C G subgroup

H acts by right multiplication on G: h-g = gh™!
G acts on the left on G and on V
there is an isomorphism between C[V]" and (C[G]" ® C[V])¢
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Grosshans Principle

V' a representation of G, H C G subgroup
H acts by right multiplication on G: h-g = gh™!
G acts on the left on G and on V

there is an isomorphism between C[V]" and (C[G]" ® C[V])¢

if W is a representation of V, w € W has a closed orbit and
stabilizer H then Sg(V & W) > Gy (V)
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Grosshans Principle

V' a representation of G, H C G subgroup
H acts by right multiplication on G: h-g = gh™!
G acts on the left on G and on V

there is an isomorphism between C[V]" and (C[G]" ® C[V])¢

if W is a representation of V, w € W has a closed orbit and
stabilizer H then Sg(V & W) > Gy (V)
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Grosshans Principle

V' a representation of G, H C G subgroup
H acts by right multiplication on G: h-g = gh™!
G acts on the left on G and on V

there is an isomorphism between C[V]" and (C[G]" ® C[V])¢

if W is a representation of V, w € W has a closed orbit and
stabilizer H then Sg(V & W) > Gy (V)

proof: C[W] — C[Gw] = C[Gw] = C[G]"
C[W @ V] - C[G]" ® C[V] (G-equivariant)
CIW & V]¢ — (C[G]" @ C[V])¢ = C[V]”

o [l = = E 9DHAE



let w= (3", x?

X2z, S vz S aixiyizi) € W, where
W= V3 =53(C3)3
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Kempf-Ness

let w= (30, X2z, >0 1 y?z;, > 0 aixiyizi) € W, where
W= Vv3=83C3)3

the stabilizer of w in G, = SL3, is a torus H, C G, (of dim. n)
t=(t1,...,tn) € Hyacts by t-x; = tjx;, t-y; = tiyj, t-z; = t 2z
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Kempf-Ness

let w= (30, X2z, >0 1 y?z;, > 0 aixiyizi) € W, where
W= Vv3=83C3)3

the stabilizer of w in G, = SL3, is a torus H, C G, (of dim. n)
t=(t1,...,tn) € Hyacts by t-x; = tjx;, t-y; = tiyj, t-z; = t 2z

by studying the moment map we see that w is a critical point for
the function v + ||v||? on the orbit SU3, -w
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Kempf-Ness

let w= (30, X2z, >0 1 y?z;, > 0 aixiyizi) € W, where
W= Vv3=83C3)3

the stabilizer of w in G, = SL3, is a torus H, C G, (of dim. n)
t=(t1,...,tn) € Hyacts by t-x; = tjx;, t-y; = tiyj, t-z; = t 2z

by studying the moment map we see that w is a critical point for
the function v + ||v||? on the orbit SU3, -w

from Kempf-Ness theory follows that the orbit G, is closed
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Kempf-Ness

let w= (30, X2z, >0 1 y?z;, > 0 aixiyizi) € W, where
W= Vv3=83C3)3

the stabilizer of w in G, = SL3, is a torus H, C G, (of dim. n)
t=(t1,...,tn) € Hyacts by t-x; = tjx;, t-y; = tiyj, t-z; = t 2z

by studying the moment map we see that w is a critical point for
the function v + ||v||? on the orbit SU3, -w

from Kempf-Ness theory follows that the orbit G, is closed
from the Corollary we get

B, (Vi) = Be,(W & Vo) > B, (V) > 3(4" - 1),
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