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Quantum dilogarithm series and pentagon identity

Let Pn “

n
ź

i“1

1

1´ qi

generating function for πpN; nq

Hilbert series (in q1{2) of algebra: Rrc1, . . . , cns, degpci q “ 2i .

Poincaré series for H˚pB GLpn,Cqq

Definition 1

For a variable z , the quantum dilogarithm series in Qpq1{2qrrzss is

Epzq “ 1`
ř

ně1
p´zqnqn2{2
śn

i“1p1´qi q
“ 1`

ř

ně1p´zq
n qn

2
{2 Pn.

Theorem (E-Pentagon Identity)

In the algebra Qpq1{2qxxy1, y2yy{py1y2 ´ qy2y1q we have

Epy1qEpy2q “ Epy2qEp´q´1{2y2y1qEpy1q.
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Pentagon identity, cont.

Epy1qEpy2q “ Epy2qEp´q´1{2y2y1qEpy1q

Pentagon identity has several interpretations, depending on your tastes.

Comparing coefficients of yγ1

1 yγ2

2 on each side gives identities:

Pγ1Pγ2 “
ÿ

pm10,m01,m11q$pγ1,γ2q

qm10m01 Pm10Pm01Pm11 ,

Combinatorics: Implies Durfee’s square/rectangle identities

Analysis (and number theory and physics): quantum version of the
five-term identity for the Rogers dilogarithm

Geometry: related to refined DT-invariant for A2 quiver; simplest
example of “wall-crossing formula”

Topology: two ways to count Betti numbers of the
GLpγ1,Cq ˆ GLpγ2,Cq-equivariant cohomology of
V “ HompCγ2 ,Cγ1q—on LHS use that V is contractible, on RHS
cut V into orbits
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We adopt topological approach:
invent finite stratifications of a quiver’s representation space,
and compare Betti numbers via spectral sequence arguments.
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Quivers

Let Q “ pQ0,Q1q be a quiver with vertex set Q0 and arrow set Q1.

For a P Q1 let ta, ha P Q0 respectively denote its head and tail
(target and source) vertex.

For any dimension vector γ we have the representation space

Repγ “
à

aPQ1

HompCγptaq,Cγphaqq

with action of Gγ “
ś

iPQ0
GLpCγpiqq by base-change at each vertex.

Let λ denote the form (extend linearly to all dimension vectors)

λpei , ejq “ #tarrows i Ñ ju ´#tarrows j Ñ iu.
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Summary of representation theory of Dynkin quivers

Dynkin quivers ðñ orientations of ADE Dynkin diagrams

E8:

E7:

E6:

Dně4:

Aně1: ‚ ¨ ¨ ¨ ‚ ‚

‚ ¨ ¨ ¨ ‚

‚

‚

‚ ‚ ‚ ‚ ‚

‚

‚ ‚ ‚ ‚ ‚

‚

‚

‚ ‚ ‚ ‚ ‚

‚

‚ ‚

Root Systems

simples: ∆ “ tαi : i P Q0u

positives: Φ “ tβju

For each β P Φ there are
unique positive integers dβα
such that

β “
ř

αP∆ dβα α

Theorem (Gabriel’s Theorem)

"

Gγ-orbits
in Repγ

*

$

&

%

Kostant Partitions
pmβqβPΦ P NΦ :
ř

βPΦ mβ β “ γ

,

.

-

1:1

For any γ:
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Quantum algebra of Q

Let q1{2 be an indeterminate and q denote its square. The quantum
algebra AQ of the quiver is the Qpq1{2q-algebra

spanned as vector space by symbols yγ , one for each dimension
vector γ

subject to the relation

yγ1`γ2 “ ´q
´ 1

2λpγ1,γ2qyγ1yγ2 .

The elements yei form a set of algebraic generators.

Let ÂQ denote the completed quantum algebra (allow power
series in y -variables)
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Example: A2

Consider the quiver 1 Ð 2. Set yi “ yei . Then

y1 y2 “ q y2 y1 ye1`e2 “ ´q
´1{2y2 y1

Thus the Pentagon Identity says that

Epy1qEpy2q “ Epy2qEpye1`e2qEpy1q.

The left-hand side reflects an ordering of the simple roots of A2;

the right-hand side reflects an ordering for the positive roots of A2.
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Reineke’s EPI generalization

For each i P Q0, Dαi simple root, identified with dimension vector ei .

Since each positive root has unique decomposition

β “
ř

iPQ0
dβαi

αi ,

the positive root β is also identified with a dimension vector

Theorem (Reineke (2010), Rimányi (2013))

For Dynkin quivers Q there exist orderings on the simple and positive
roots such that

ñ
ź

α simple

Epyαq “
ñ
ź

β positive

Epyβq.

where “ñ” indicates the products are taken in the specified orders.

Actually, the common value of both sides is denoted EQ and called
the refined DT invariant of the quiver (Keller, 2010).
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General acyclic factorizations

Theorem (A. (2018))

For Q acyclic and any admissible Dynkin subquiver partition pQ1, . . . ,Qr q

we have a factorization of the DT-invariant

EQ “

¨

˝

ñ
ź

σPΦpQ1q

Epyσq

˛

‚¨ ¨ ¨

¨

˝

ñ
ź

τPΦpQr q

Epyτ q

˛

‚.

Suppose Q is Dynkin. When r “ 1 we obtain the “positive root
side” of the Reineke identity.

When r “ |Q0|, and hence each Qi “ “the singleton vertex i”, we
obtain the “simple root side” of the Reineke identity.

Allman, J. q. dilogs, geometry of quivers



11/16

General acyclic quivers

‚ ‚ ‚

‚

‚

‚

‚

‚

Acyclic quiver with admissible Dynkin subquiver partition (circled
in red)

Admissible means that when each circled subquiver is shrunk to a
vertex, the resulting quiver is still acyclic.

This is exactly the condition which allows the roots corresponding to
the circled diagrams to be totally ordered

The ordering ΦpA1q ă ΦpA3q ă ΦpD4q is determined by a λ ď 0
condition.

Corresponding factorization of EQ has 1` 6` 12 “ 19 terms:

EQ “ EpyA1q ¨

¨

˝

ñ
ź

σPΦpA3q

Epyσq

˛

‚¨

¨

˝

ñ
ź

τPΦpD4q

Epyτ q

˛

‚.
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Square products

A3: D4:1 2 3 and 1 2

3

4

Take alternating orientations of two quivers as above

Form A3 lD4 with grid of vertices A3 ˆ D4 and reverse arrows in
the full sub-quivers tiu ˆ D4 and A3 ˆ tju whenever i is sink in A3

and j is source in D4

˝ ‚
˝

˝

‚ ˝
‚

‚

˝ ‚
˝

˝
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Square products: a result

Theorem (A.–Rimányi (2016))

For the square product An lAm we have the identity

ñ
ź

pi,φqP∆pAnqˆΦpAmq

Epypi,φqq “
ñ
ź

pψ,jqPΦpAnqˆ∆pAmq

Epypψ, jqq

for prescribed orders on the root sets above.

Keller, via cluster algebras/categories

Find a maximal green sequence of quiver mutations

From this, perform an algorithm and each side is implicitly defined
by the end point of this algorithm

The result must be the DT-invariant EQ,W

A.-Rimányi, via topology/geometry

For each γ, stratify Repγ (finitely many strata)

Need theory of quivers with potential (here, sum of all the cycles)

Spectral sequence in rapid-decay cohomology relates Betti numbers
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More wild examples: n-cycles

1 2 ¨ ¨ ¨ n

Quiver with potential W “ ´a1a2 ¨ ¨ ¨ an (ai has head i)

Intersects square product case: 4-cycle is A2 lA2

Theorem (A. (2018))

Let n ě 3, 1 ď ` ă n, and j “ n ´ `. In the completed quantum algebra
ÂΓn , we have the following quantum dilogarithm identity

ñ
ź

φPΦpAnqztβ0u

Epyφq “
ñ
ź

ψPΦpA`qˆΦpAj q

Epyψq

for specified orders on the root sets.
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n-cycles, upshot

Theorem (A. (2018))

Let n ě 3, 1 ď ` ă n, and j “ n ´ `. In the completed quantum algebra
ÂΓn , we have the following quantum dilogarithm identity

ñ
ź

φPΦpAnqztβ0u

Epyφq “
ñ
ź

ψPΦpA`qˆΦpAj q

Epyψq

for specified orders on the root sets.

Able to conjecture MGSs which achieve each side via Keller’s
algorithm by looking at Auslander–Reiten graphs.

The MGS which achieves the left has length
|ΦpAnq| ´ 1 “ 1

2npn ` 1q ´ 1.

Conjecture that this is the maximal length of an MGS

Gives upper bound for No Gap Conjecture (Brüstle, Dupont,
Perotin, 2014)
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Thank you
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