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Quantum dilogarithm series and pentagon identity

u 1
LetP,,:El_qi

@ generating function for m(N; n)

o Hilbert series (in g'/?) of algebra: R[cy,. .., c,], deg(c;) = 2i.
@ Poincaré series for H*(B GL(n,C))

For a variable z, the quantum dilogarithm series in Q(q%/?)[[2]] is

_\n n2/2 2
E(Z) =1+ Zn21 % =1+ Zn;l(_z)n qn /2 Pn~

Theorem (E-Pentagon Identity)

In the algebra Q(q"?){{y1,y2))/(y1y2 — ayay1) we have

E(y1) E(y2) = E(y2) E(—q 2yay1) E(y1).
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Pentagon identity, cont.

E(y1)E(y2) = E(y2)E(—q ?y2y1)E(y1)
Pentagon identity has several interpretations, depending on your tastes.

e Comparing coefficients of y;"y;* on each side gives identities:

PPy, = Z g™ Pri Prmoy Py »

(m10,mo1,mi1)k=(v1,72)

@ Combinatorics: Implies Durfee's square/rectangle identities

@ Analysis (and number theory and physics): quantum version of the
five-term identity for the Rogers dilogarithm

@ Geometry: related to refined DT-invariant for A, quiver; simplest
example of “wall-crossing formula”

@ Topology: two ways to count Betti numbers of the
GL (71, C) x GL(y2, C)-equivariant cohomology of
V = Hom(C",C")—on LHS use that V is contractible, on RHS

cut V into orbits
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We adopt topological approach:
invent finite stratifications of a quiver’'s representation space,
and compare Betti numbers via spectral sequence arguments.
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o Let Q@ = (Qp, Q1) be a quiver with vertex set Qp and arrow set Q.

@ For a€e Qq let ta, ha € Qg respectively denote its head and tail
(target and source) vertex.

@ For any dimension vector v we have the representation space

Rep., = (—B Hom(CW(tQ),CW(h"))
aeQ,

with action of G, = [[;cq, GL(CY(") by base-change at each vertex.

@ Let X denote the form (extend linearly to all dimension vectors)

A(ej, ej) = #{arrows i — j} — #{arrows j — i}.
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Summary of representation theory of Dynkin quivers

Dynkin quivers <= orientations of ADE Dynkin diagrams

>1- o Root Systems

Dnzg:  o— - < o simples: A = {q; : i€ Q}

,_,_I_,_. e positives: ¢ = {3;}
EGZ

@ For each 3 € ® there are

I unique positive integers d”
E;: such that
ES: o o I o o o o B = ZQGA dg @

. 1:1 Kostant Partitions
For any ~: (Eqomi’s (mg)pew € N®
’ in Rep,
Zﬁecb mg 8 =~y
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Quantum algebra of @

Let g'/2 be an indeterminate and g denote its square. The quantum
algebra A of the quiver is the Q(q'/?)-algebra

@ spanned as vector space by symbols y., one for each dimension
vector 7y

@ subject to the relation

_1
Yyi+yv = —4 ZA(FYl”YZ)y’Yl)/"/z'

@ The elements y,, form a set of algebraic generators.

o Let AQ denote the completed quantum algebra (allow power
series in y-variables)
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Example: A,

Consider the quiver 1 « 2. Set y; = y,,. Then

1/

ny=4qyn Ye+eo = —q 2oy

Thus the Pentagon Identity says that
E(y1)E(y2) = E(y2)E(Ye, +e: ) E(y1)-

@ The left-hand side reflects an ordering of the simple roots of Aj;

@ the right-hand side reflects an ordering for the positive roots of A,.
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Reineke's EPI generalization

@ For each i € Qp, Ja; simple root, identified with dimension vector e;.

@ Since each positive root has unique decomposition
ﬁ = ZIEQU dgiai’

the positive root 3 is also identified with a dimension vector

Theorem (Reineke (2010), Rimdnyi (2013))

For Dynkin quivers Q there exist orderings on the simple and positive

roots such that
1_[ E }/oc = H E yﬂ

« simple B positive

’

where “—~" indicates the products are taken in the specified orders.

o Actually, the common value of both sides is denoted Eg and called
the refined DT invariant of the quiver (Keller, 2010).
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General acyclic factorizations

Theorem (A. (2018))

For Q acyclic and any admissible Dynkin subquiver partition (Q, ..., Q)
we have a factorization of the DT-invariant

Eq = 1_[ ]Eyo 1_[ E(y'r)

0’€¢ Ql) ’T€¢(Qr)

@ Suppose @ is Dynkin. When r = 1 we obtain the “positive root
side” of the Reineke identity.

@ When r = |Qo]|, and hence each Q; = “the singleton vertex /", we
obtain the “simple root side” of the Reineke identity.
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General acyclic quivers

@ Acyclic quiver with admissible Dynkin subquiver partition (circled
in red)

@ Admissible means that when each circled subquiver is shrunk to a
vertex, the resulting quiver is still acyclic.

@ This is exactly the condition which allows the roots corresponding to
the circled diagrams to be totally ordered

@ The ordering (A1) < ®(A3) < $(D,) is determined by a A <0
condition.

@ Corresponding factorization of Eq has 1 + 6 + 12 = 19 terms:

—~

Eo=Eya) | [[ Eoa) |- [ J] E»)

oed(As) red(Dy)
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Square products

3

Az 1 2 3 and D4:1<—2/
\

4

@ Take alternating orientations of two quivers as above

@ Form As[]D, with grid of vertices A; x D4 and reverse arrows in
the full sub-quivers {i} x Dy and Az x {j} whenever i is sink in A3
and j is source in Dy

@ —— > O¢—— o

[LAA

_—
-—
_—
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Square products: a result

Theorem (A.—Rimanyi (2016))
For the square product A,[]A, we have the identity

11 E(yi,e) = 1 E(y(w, i)
(7, 6)ED (A2) X D(An) ()P (An) x A(An)

for prescribed orders on the root sets above.

o Keller, via cluster algebras/categories

e Find a maximal green sequence of quiver mutations

e From this, perform an algorithm and each side is implicitly defined
by the end point of this algorithm

e The result must be the DT-invariant Eq,w

e A.-Rimanyi, via topology/geometry

o For each v, stratify Rep,, (finitely many strata)
o Need theory of quivers with potential (here, sum of all the cycles)
o Spectral sequence in rapid-decay cohomology relates Betti numbers
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More wild examples: n-cycles

1 2 PN n

~_ -

@ Quiver with potential W = —aja, - - - a, (a; has head /)

@ Intersects square product case: 4-cycle is Ay [JA>

Theorem (A. (2018))

Let n>3,1</¢<n, andj=n—/{. In the completed quantum algebra
Ar , we have the following quantum dilogarithm identity

[T E(e = [] Ew)

ped(A)\{Bo} e (Ae) x P(A;))

for specified orders on the root sets.
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n-cycles, upshot

Theorem (A. (2018))

éet n>3,1</{¢{<n,andj=n—~{. Inthe completed quantum algebra
Ar_, we have the following quantum dilogarithm identity

—~

1 Eww= [ Eo

deP(An)\{Bo} hed(Ag) x P(A;))

for specified orders on the root sets.

@ Able to conjecture MGSs which achieve each side via Keller's
algorithm by looking at Auslander—Reiten graphs.

@ The MGS which achieves the left has length
|®(A,)| —1=1n(n+1)—1.

@ Conjecture that this is the maximal length of an MGS

@ Gives upper bound for No Gap Conjecture (Briistle, Dupont,
Perotin, 2014)
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Thank you
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