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Notation

• G: simply connected complex algebraic group of type ADE

• P: parabolic subgroup

• G/P: partial flag variety

• C[G/P]: coordinate ring
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Overview

Geiss - Leclerc - Schröer

There exists a cluster algebra structure on C[G/P] using

subcategory of modules over a preprojective algebra

Jensen - King - Su

C[Gr(k , n)] has a categorification via a category of

Cohen-Macaulay modules of a certain ring.

Baur - King - Marsh

Gave a combinatorial description of the JKS categorification via

dimer models.
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Goal

JKS: BKM:

k-subset I of {1, 2, . . . , n}

CM module MI a vertex of a quiver

TD = ⊕IMI a quiver or dimer model D

EndB(TD) Jacobian algebra AD

Theorem (BKM)

The Jacobian algebra AD
∼= EndBTD .

Want a combinatorial model for cluster structure of double Bruhat

cells on Kac–Moody group G .
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Jacobian algebra

Definition

Let Q:

1 2

3 4

a

bd

c

with potential P = abcd

Cyclic derivatives, ∂a(P) = bcd , ∂b(P) = cda, ∂c(P) = dab,

∂d(P) = abc

Jacobian ideal, J(P) = Ideal generated by

{∂a(P), ∂b(P), ∂c(P), ∂d(P)}

Jacobian algebra, A(Q,P) = CQ/J(P)

Superpotential S =
∑

anticlockwise cycles -
∑

clockwise cycles
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Cluster structure on C[Gr(k , n)]

JKS: BKM:

k-subset I of {1, 2, . . . , n}

CM module MI a vertex of a quiver

TD = ⊕IMI a quiver or dimer model D

EndB(TD) ∼= Jacobian algebra AD

Want a combinatorial model for cluster structure of double Bruhat

cells on Kac–Moody group G .
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Quivers from double Bruhat cells

A Kac-Moody group G behaves like a semi-simple Lie group.

Fact

In particular, G is a disjoint union of the double Bruhat cells

Gu,v = B+uB+ ∩ B−vB−

where u, v ∈W

Berenstein, Fomin and Zelevinsky gave a combinatorial way of

getting a quiver from double Bruhat cells in Cluster Algebras III.

(G , u, v) Qu,v (call BFZ quiver)
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Example (BFZ quiver)

Example

W = S4, u = s3s2s1s2s3, v = e

A3
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Relation to dimers

Gr(k, n) wn ∈ Sn

dimer Qwn,e

BKM BFZ

∼

In type A, the BFZ quivers are planar, but not true in general.
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Quivers in other types

Instead of drawing them on a plane, we will draw the BFZ quivers

on the cylinders over the corresponding Dynkin digrams.

1 2 3

n − 1

n

n − 2

Theorem (K)

For any symmetric Kac–Moody group G, the quiver Qu,v is planar

in each sheet.
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Example of a dimer model on a cylinder over E7

7 6 5

2

3

4

1

u = s1s3s2s4s5s7s3s6s1s5s7s6s4s3s2s1s4s5s6s7

7 6 5 4 4 2 1 4 3
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Quivers in other types

Theorem (K)

• Each face of Qu,v is oriented.

• Each face of Qu,v on the cylinder projects onto an edge of the

Dynkin diagram.

• Each edge of Qu,v projects onto a vertex of the Dynkin

diagram or an edge of the Dynkin diagram.
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The quivers Qu,v

To get the quiver Qu,v , we attach the quiver Qe,v on top of the

quiver Qu,e . We will see this with u = s1s2s1s3, v = s2s3s3s1 ∈ S4.

1 2

Qe,v :

3

1 2

Qu,e :

3

1 2

Qu,v :

3
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The quivers Qu,v

k `
e

p2

k `e p1

k `
p1

p2

F

Figure 1: Case 1

k `
e

p2

k `e p1

k `e p1

p2

Figure 2: Case 2
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Rigid potential

We need the superpotential of these quivers to be Rigid.

Rigid: None of the mutations of the potential creates a 2-cycle.

Definition

A potential S is called rigid if every oriented cycle in Q belongs to

the Jacobian ideal J(S) up to cyclic equivalence.
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Rigid potential

Example (Non-example)

1 2 S1 = abc

3 4

a

d b

e

c

J(S1) = 〈bc, ca, ab〉. So abc ∈ J(S1) but cde /∈ J(S1).

Therefore S1 is not rigid.

Example

1 2 S2 = abc + cde

3 4

a

d b

e

c

J(S2) = 〈bc, ca, ab + de, ec , cd〉. So abc ∈ J(S2) but cde ∈ J(S2).

Therefore S2 is rigid.
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1 2 3

n − 1

n

n − 2

Theorem (Buan-Iyama-Reiten-Smith, K)

Let g be a simply laced, star shaped Kac-Moody Lie algebra and

Qu,e be the quiver corresponding to the double Bruhat

decomposition. Then the superpotential of Qu,e is rigid.
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Thank you!
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