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1. Motivations

e mMmoduli problem in representation theory is to clas-

sify isomorphism classes of objects.

e [he moduli problem always has the form of an
algebraic variety X together with an algebraic group
G acting on X. Hence the goal is to understand the

invariants of “X/G” in the many different ways.

e [ his work is to apply the geometric ideas to the-
ory of vertex operator algebras with influence of such

ideology.
2. Vertex operator algebras

Vertex algebra (VA): (V,YV, 1Y).
e V— a C-vector space
e YV :V = Ende(V)|[[z71,2]], (state-field corresp.)

v YV(’U,Z) = Zvnz_n_l, vn € Endc(V)
n

such that YV(V,2)V C V[z71 2]]. Such Y(v,z) are

called fields and elements v in V are called states.



e (the locality property)

(21—25)%[Y (u, 21),Y (v, 25)] = 0 for some k = k(v,u) > 0

e YV(1,2)=1Id, and YV (v,2)1 € v+ 2V[[]].
e there is a linear operator D : V — V such that

Y(D(v),z) = dile(v,z)

Remark: The locality together with the operator D

implies the Jacobi identity which can be written as
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Equivalently, taking [ = 0O,
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for all n,m € Z.

Vertex operator algebra (VOA): (V,YV, 1V uV).
e (V,YV 1Y) is a vertex algebra and
e w €V suchthat for YV (w,2) =%, L(n)z~""2 such



that the span of {L(n) : n € Z} is a Lie algebra satis-

fying the following relations:

m3 —m
[L(m), L(m) = (m = m)L(m +n) + "

and is a Virasoro Lie algebra (a central extension of
the Witt Lie algebra of vector fields: (<)), with
L(n) = —t"t14d on C[t,t71]

e L(-1)=D.

5m—|—n,Oc

On a VA, there could be many conformal structures!
Example of a vertex algebra Any commutative al-

gebra A is a vertex algebra with

Y(a,z) =a_1:V — V is the multiplication of a on A

and D and 1 the identity of A. It is also a vertex op-
erator algebra with trivial Virasoro Lie algebra module

structure, i.e., w = 0.

V-modules: (M,Y,;;) (for VA).

Yy(v,z) = Zvnz_n_l, vp € Ende(M)

which are fields on M and the locality property holds

and the associativity holds:
(20 + 21) (Vo (Y (u, 20)v, 21 )z
= (20 + 21)"Var(u, 20 + 21) Yas (v, 21))z



for all u,v € V and x € M and some k = k(u,z) > 0.

If A is a commutative algebra and viewed as vertex
algebra, then vertex algebra modules are exactly the

modules of the commutative algebra.

Fact: the module category for a vertex algebra is an

abelian category.

If V is a vertex operator algebra, any vertex algebra
module (M, Y]\‘j) automatically has a module structure
of the Virasoro Lie algebra defined by the operators
LY,(n) on M from

Ya(wY,2) =Y LY, (n)z"""2.
mn

There are more conditions on representations of VOA:
L(0) is semisimple with finite dimensional eigenspaces
and eigenvalues (weights) should be bounded below
(similar to category O but corresponding to lowest

weights).



3. Semi-conformal subalgebras
A VA-homomorphism
frw,yWalWy - (v,yv,1")

FOYY (wy, 2)w) = YV (f(wr), 2) f(wa), FAY) =1Y.
For a VA-homomorphism f : (W, YW 1" W) —
(V, YV, 1V, w").

f is conformal if f(w") = w", which is equivalent to

foIWm)=LY()offorall nez

i.e., @ homomorphism of Virasoro modules.

f is semi-conformal if

foIWm) =LY(n)o fforall n>—1.

If f: W CV,thenY" =YV |y and we call (W, YW 1W W
a conformal (semi-conformal) subVOA of (V, YV, 1V, w").
Definition 1. For any VOA (V,Y,1,w) we define

e ScAlg(V,w") = {(W,w") C (V,wY) semi conf. subalg}
o Sc(V,w") ={w' € V] a semi-conformal vector}
Theorem 1. For any vertex operator algebra (V,Y,1,w),
the set Sc(V,w") of semi-conformal vectors of (V,w")

is an affine algebraic variety.



In fact, the equations for the variety SC(V,wV) are

([ L(0)w = 2u/;

L(1)w' = 0;

| L2 = 3el; (1)
L'(-1)w' = L(-1)';

L(n)w' =0,n > 3.

\

Theorem 2. For any vertex operator algebra (V,Y,1,w)
and any vertex subalgebra W, there is at most one
conformal structure "WV € W on W such that (W, w")
iIs semi-conformal vertex operator subalgebra.
Theorem 3.If (W, YW, 1W WYy C (v,YyV, 1V, oY) is
a semi-conformal subVVOA, then Sc(W,w") C Sc(V,w")

Affine vertex algebras

Example 1l.e Let g be a Lie algebra, with a non-
degenerate invariant symmetric bilinear form (-, -).

Invariant means ([z,y], z) = (z, [y, 2]).

e [ he corresponding affine Lie algebra with C cen-

tral is

g=glt,t @ CC



with Lie structure

[xt", yt™] = [, y]tn—l—m + n5n+m,OC'

g+ =g[t] @ CC C g is a Lie subalgebra.

Vﬁ(l, 0) =U(g) DU (§4) C; (the Verma module)
has a vertex algebra structure.
e ('=1[¢€Cis called the level.
e v =1®1 is the generator of the g-module, i.e,
the highest weight vector.
o Lﬁ(l,o) the irreducible quotient of Vﬁ(l,O) as g-
module.
e Both Va(l,O) and LE(Z,O) have a vertex algebra
structure such that

Y(zt T, 2) = > oty L

nez
with xt™ acting on g-modules. With a few exceptions

of |l € C.
e Both VE(Z,O) and Lﬁ(l,O) have a conformal struc-

ture making them as vertex operator algebras.

e Certain irre. g-modules Lﬁ(l,)\) are irre. modules
for the both VOAs.

Here X\ can be thought as irreducible g-modules.



Example 2.e¢ [ C g is a subalgebra such that the
restriction of the bilinear form (-,-) is degenerate and
h is a subalgebra of §.

¢ L;(1,0) = U(h)vot C L;(1,0) is an irr. h-module
and has VOA structure. It is not a subVOA, but a
semi-comformal subVOA of Lﬁ(l,O).

e If h is a maximal torus, LE(Z,O) = VE(Z,O) is the

Heisenberg VOA.

4. Centralizers in VOA
For any vertex algebra (V,YV,1Y) and any subset S

of V, the centralizer

Cy(S)={veV | [YV(v,2),YV(s,20)] =0,V,s € S}.

Consequences:

e (Cy(S) is always a vertex subalgebra.

e Cy(S) = Cy((S)) with (S) being the vertex sub-
algebra generated by S.

o Cyy(V)={weW | wp(v) =0Vn>0,YVveV}

o Cyy(V)={weW |v(w)=0Vn>0,YVveV}

e Cy(V)is asub VA of W.

e C(Cy(V) is called the center of the VA V (always a

commutative associative algebra).



o Cy(W)=hompy_pmoq(W,V), space of all W-module

homorphisms of W C V is a vertex subalgebra.

If (W, yW iW Wy c (v,YyV,1V,wY) are VOAs, Cy (W)
needs not be a VOA.

Theorem 4.If (W,YW 1W WYy cC (v,YyV, 1V, oY) is
a semi-conformal subVOA, then Cy (W) also a semi-
conformal sub VOA with w&vW) =,V — W,

o Cy(W)=ker(LW(-1): Vv = V)
where YV (W, 2) = LW (n)z—n—2
e Cy(V)=C1V if V is a simple VOA.

A vertex algebra is called central if Cy (V) = C1.
Theorem 5.I1f (W,YW 1W WYy cCc (v,;YyV, 1V, oY) is

a semi-conformal subVOA, then the map

Sc(W,w") x Sc(Cy (W), wcv W)Y 5 sc(v, W)

defined by (w',w") — ' + " is injective.

Poset structure on Sc(V,w)



For each ' € Sc(V,w),

V(W) =Cy(w—uw)

The map ScAlg(V,w) — Sc(V,w)

W' — V(W) is an injection. is a semi-conformal subal-
gebra of V.

Definition 2. We say &' <" if V(&) C V().

There is an order reversing map Sc(V,w) — Sc(V,w)
such that ' — w — W',

Example 3. For for simple g and h C g Cartan subal-
gebra Lﬁ(l’ 0) C Lﬁ(l, 0). The semiconformal sub VOA
K(g,l) = CLE(Z,O)(LE(L 0)) is called a parafermion stud-
led intensively by physists.

Conjecture 1. K(g,l) is always rational!

More general case is speculated. If W is rational and
V C W is semi-conformal and rational, then Cy (V) is

also rational.

5. Tensor Products



For two VAs V/ and V" the tensor product VA struc-
ture on V' ® V" is defined by

YV’@V”(,U/ 20", 2) = YV/(’U/, 2) ® YV”(U//, 2)

and 1V’®V” = 1V’ X 1V”'

Weset W =V @V”"and V=V @1V . Cuy(V) D
1V @ V. If both V/ and V" are VOAs with «Y’ and
V" then V'@ V" is also a VOA with

wv/®vl/ _ w/ ® 1v// _I_ 1v/ ® wv//

Thus V/®1" is a semi-conformal subalgebra of V' V"
and Cyrgy(V/®1Y") also a semi-conformal in V/@ V"
with conformal element 1V @ wV".

Proposition 1.Cyigy(V' ®@1V") = Cpr(V) @ V. In
particular, If V' is a simple vertex operator algebra,
then Cyrgyn(V' @1V") =1V @ v/

Proposition 2.If V' and V" are two simple VOAES,
then V' @ V' is a simple VOA.

Example 4. For a finite dim. simple Lie algebra g,
Lz(1,0)®™ is a simple VOA and Lj(nl,0) C L;(1,0)®"
is a semiconformal sub VOA.

Example 5.If L is an even lattice and Vj is a lattice



VOA, then V" £ Viun. And V57 C Vixn IS @ semi-
conformal subVOA.

Question 1. Decompose Lﬁ(l, 0)®" gs Lﬁ(nl, 0)-modules.

More generally, given a composition (l{,---ls), and
simple Lﬁ(li,O)—modules M;, then

M{®---® Mg is a module for Lﬁ(ll,O) ® - ®L§(ZS,O).
Li(ly + -+ +150) C L5(11,0) ® - - ® Lz(ls, 0) is semi-
conformal subVOA.

Question 2. Then decompose M{®---QMg as Lﬁ(ll-l-
...+ 1ls,0)-modules.

These are Schur-Weyl| duality of questions.

6. Heisenberg vertex operator algebras
e Let h be a d-dim. vector space (abelian Lie alg.)
(-,-) @a nondegenerate symmetric bilinear form on §
e h =C[t,t71]®H® CC is the affiniziation of the

abelian Lie algebra § with

[B1 ®@t™, Bo @t"] = m(B1, f2)dm,—nC.

e by =C[t]®ha@CC is an Abelian subalgebra.
e For V) €, we can define an one-dimensional §=0-
module Ce* by the actions (h ® t™) - e* = (X, h)dp, o



and C-e* =¢e? for heh and m > 0.
o Set

Va(1,2) = U(B) ®p g0y Ce* 2 S(ICl T @ b)

e Choose an orthonormal basis {hy,---,hg} Of b

Define w =292 ; hi(-1)2 -1 ¢ V2(1,0).

Then (Va(l,O), Y, 1, w) has a vertex operator algebra
structure and

o (Vﬁ(l’ A),Y) becomes an irreducible module of (Vﬁ(l’ 0)
for any A\ €b.

e Each ' € Sc(V,w) correspond to a linear map A, :

b — h which is a projection to a regular subspace of §.

Theorem 6. 1) The map p : ' — Im(A,) is an
ordering preserving Aut(VE(l, 0),w)-equivariant bi-
jection form SC(VH(I,O),w) to Reg(h);

2) SC(VH(l,O),w) has exactly d + 1 orbits under the
group Aut(VE(l,O),w)—action and each 0 < i < d

corresponds to the orbit

SC(VH(l,O),w)iz{h’C hlb' is i-dim. reg. subsp. of h}



3) There exists a longest chain in SC(VE(l, 0),w) such
that the length of this chain equals to d: there
exist wl, ... wi-1le Sc(V;(1,0),w) such that

d

O=w0<w1<---<w_1<wd=w.

Theorem 7. For each ' € SC(VE(l,O),w), the fol-
lowing assertions hold.

1) Im A generates a Heisenberg vertex operator al-
gebra

— /
VIm/A\w,(l’ O) = CVH(170)(< W — w >)

and Ker A , generates a Heisenberg vertex opera-
tor algebra

— / .
Vme/(l, O) — CV/h\(l,O)(< W >),

2) CVE(l,O)(VKﬂ (1,0)) = V— (1,0)
CVE(l,O)(VIrfA\/(l,O))) = Ve ,(1,0);

3) V/b\(l,O) = CVH(170)(< w’ >) &) CV/[)\(]"O)(CV/[)\(]"O)(<
w' >)).

7 ITsomorphism Problem



Theorem 8. Let (V,w) be a nondegenerate simple
CFT type vertex operator algebra generated by V7.
Assume that L(1)Vy; = 0. If for each ' € Sc(V,w),

there are

V2 Cy(Cyl<uw >)@Cy(<w >) (2)

then (V,w) is isomorphic to the Heisenberg vertex op-
erator algebra (Vﬁ(l’ 0),w) with h = V7.

Theorem 9. Let (V,w) be a nondegenerate simple
CFT type vertex operator algebra generated by V7.
Assume dimV; = d and L(1)V; = 0. If there exists a
chain 0 = wf < wl < -+ < Wi 1 < wid =w in Sc(V,w)
such that dim Cy (Cy (< w? — w'™1 >))1 £ 0, for i =
1,---,d, thenV is isomorphic to the Heisenberg vertex

operator algebra (Vﬁ(l’ 0),w) with h = V7.



THANK YOU!




