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» V = a representation of the quiver Q
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«O» «F»r «=)>r 4

DA



» @ =(Qo, Q1,t,h) is a quiver

» K = algebraically closed field of characteristic 0
» V = a representation of the quiver Q

» V(i) is the K-vector space at vertex |
» V/(a) is the K-linear map along arrow a.
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» @ =(Qo, Q1,t,h) is a quiver
» K = algebraically closed field of characteristic 0

» V = a representation of the quiver Q

» V(i) is the K-vector space at vertex |
» V/(a) is the K-linear map along arrow a.
» dimV = the dimension vector of V.
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Notation

v

Q = (Qo, Q1,t, h) is a quiver
K = algebraically closed field of characteristic 0
» V = a representation of the quiver @

» V(i) is the K-vector space at vertex i
» V/(a) is the K-linear map along arrow a.
» dimV = the dimension vector of V.

v

» rep(Q) is the category of finite dimensional quiver
representations.



Given a quiver @ with vertex set Q, and arrow set @y, we define
the Euler inner product of two vectors a and 3 in Z to be
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Given a quiver @ with vertex set Q, and arrow set @y, we define
the Euler inner product of two vectors a and 3 in Z to be

aeQy

(o, B) = ZQ: a(i)B(i) - . a(ta)B(ha)
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Euler Inner Product and Semi-stability

Given a quiver Q with vertex set @, and arrow set 1, we define
the Euler inner product of two vectors a and 3 in Z9 to be

(o, 8) = 37 a()B(i) = ), a(ta)B(ha)

i€Qo ae@

From now on, assume that @ is a connected acyclic quiver.
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Let o e Q.
A representation V € rep(Q) is said to be («, —)-semi-stable if:

(a,dimV) =0 and {a,dimV’) <0

for all subrepresentations V' < V.



Euler Inner Product and Semi-stability

Given a quiver Q with vertex set @, and arrow set 1, we define
the Euler inner product of two vectors a and 3 in Z9 to be

(o, 8) = 37 a()B(i) = ), a(ta)B(ha)

i€Qo ae@

From now on, assume that @ is a connected acyclic quiver.

Let o e Q.
A representation V € rep(Q) is said to be («, —)-semi-stable if:

(a,dimV) =0 and {a,dimV’) <0

for all subrepresentations V' < V.

Likewise, it is {(«, —)-stable if the inequality is strict for proper,
non-trivial subrepresentations.



Recall that a representation V is called Schur if
Homg(V,V) =K.
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Schur Representations and Generic Dimension Vectors

Recall that a representation V is called Schur if
Homg(V, V) =K.

We say a dimension vector 3 is a Schur root if there exists a
[b-dimensional Schur representation.



Schur Representations and Generic Dimension Vectors

Recall that a representation V is called Schur if
Homg(V, V) =K.

We say a dimension vector 3 is a Schur root if there exists a
[b-dimensional Schur representation.

We say that 8’ < 3 if every 3-dimensional representation has a
subrepresentation of dimension [3’.



rep(Q)fZ ) is the full subcategory of rep(Q) whose objects are
(v, —)-semi-stable.
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rep(Q)f; _y is the full subcategory of rep(Q) whose objects are
(v, —)-semi-stable.

We say that 3 is (a, —)-(semi)-stable if there exists a
B-dimensional, (a, —)-(semi)-stable representation. This is
equivalent to saying
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rep(Q)f; Ly is the full subcategory of rep(Q) whose objects are
(v, —)-semi-stable.

We say that 3 is (a, —)-(semi)-stable if there exists a
B-dimensional, (a, —)-(semi)-stable representation. This is
equivalent to saying

(a, ) =0 and (o, 3') <0 for all 3’ = 3
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Semi-Stability

rep(Q)f; _y is the full subcategory of rep(Q) whose objects are
(v, —)-semi-stable.

We say that (3 is («, —)-(semi)-stable if there exists a
p-dimensional, {(«, —)-(semi)-stable representation. This is
equivalent to saying

(a,8) =0 and (a,3) <0 for all 3’ >

And respectively, § is («, —)-stable if the second inequality is strict
for 8" 0, .



The cone of effective weights for a dimension vector 3:

D(B) = {a e Q¥®[(a, ) = 0,(a, ') <0, 8" > B}
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The cone of effective weights for a dimension vector 3:

D(B) = {a e Q¥®[(a, ) = 0,(a, ') <0, 8" > B}

B is a Schur root if and only if

D(B)° = {a e Q¥®|{a, 8) = 0,{c, ) <O ¥ B = 3,8#0,8} is
non-empty if and only if 3 is (3,—-) — (-, B)-stable.
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Two rational vectors aq, ap € Q9 are said to be GIT-equivalent
(or ss-equivalent) if:

(@,

=rep(Q) (%, 1)
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Two rational vectors aq, ap € Q9 are said to be GIT-equivalent
(or ss-equivalent) if:

(@,

=rep(Q){, )

Main Question: Find necessary and sufficient conditions for a1 and
a to be GIT-equivalent.
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Big Question

Two rational vectors g, ap € QQ", are said to be GIT-equivalent
(or ss-equivalent) if:

rep(Q)F, -y = rep(Q)7,.

Main Question: Find necessary and sufficient conditions for a;; and
«y to be GIT-equivalent.

Colin Ingalls, Charles Paquette, and Hugh Thomas gave a
characterization in the case that Q is tame, which was published in
2015. Their work was motivated by studying what subcategories of
rep(Q) arise as semi-stable-subcategories, with an eye towards
forming a lattice of subcategories.



We can build the Auslander-Reiten quiver, I, of the path algebra
KQ.
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We can build the Auslander-Reiten quiver, I, of the path algebra
KQ.

» Each indecomposable KQ-module corresponds to a vertex in I
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A tiny bit of AR Theory for tame path algebras

We can build the Auslander-Reiten quiver, I, of the path algebra
KQ.
» Each indecomposable KQ-module corresponds to a vertex in I’
» All projective indecomposables lie in the same connected
component, and all indecomposables in that component
(called preprojectives) are exceptional (i.e., their dimension
vectors are real Schur roots)
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A tiny bit of AR Theory for tame path algebras

We can build the Auslander-Reiten quiver, I, of the path algebra
KQ.
» Each indecomposable KQ-module corresponds to a vertex in I’
» All projective indecomposables lie in the same connected
component, and all indecomposables in that component
(called preprojectives) are exceptional (i.e., their dimension
vectors are real Schur roots)
» Similarly for injectives/preinjectives
» Remaining indecomposables occur in tubes

» Homogeneous tubes (infinitely many)
» Finitely many non-homogeneous tubes



Now for example, a rank 3 tube looks like

: 1 Not Schur
B B - B B _di i
B Tor B Tor B Tor B O-dimensionsl Sehur
B13 P12 P11 P13 | Schur
Pu T, b T, B
B3 " B " Bu
P ----- > Prz ----- » P ----- » P
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IPT did the following:

» Label the non-homogeneous regular tubes in the A-R quiver
1,..., N, and let the period of the it" tube be r;.
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IPT did the following:

» Label the non-homogeneous regular tubes in the A-R quiver
1,..., N, and let the period of the it" tube be r;.

» Let B; be the j™ quasi-simple root from the i tube, where
1<j<n.
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Previous work on the tame case

IPT did the following:
» Label the non-homogeneous regular tubes in the A-R quiver
1,...,N, and let the period of the i* tube be r;.
» Let B3; be the j*™ quasi-simple root from the i* tube, where
1<j<n.
» Set / to be the multi-index (a1,...,ay), where 1 < a; <r;, and
R to be the set of all permissible such multi-indices.



Previous work on the tame case

IPT did the following:
» Label the non-homogeneous regular tubes in the A-R quiver
1,...,N, and let the period of the i* tube be r;.
» Let B3; be the j*™ quasi-simple root from the i* tube, where
1<j<n.
» Set | to be the multi-index (a1, ...,an), where 1 < a; < r;, and
R to be the set of all permissible such multi-indices.

» Define the cone C; to be the rational convex polyhedral cone
generated by ¢, together with 3; ;, except for (;,..



Define J = {C }1ecr U {D(5)} 3, where (3 is a real Schur root. Set
Ja={CeJlaeC}.
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Define J = {C }1ecr U {D(5)} 3, where (3 is a real Schur root. Set
Ja={CeJlaeC}.

only if oy, = Ja,-

For ay,ap € 7%, we have that a1 and ay are GIT equivalent if and

«O» «F»r « =>»

<

DA



Let @ be any acyclic quiver.
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Let @ be any acyclic quiver.

The semi-stable locus of « with respect to 5 is

rep(Q. B)F
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Let @ be any acyclic quiver.

The semi-stable locus of o with respect to 5 is:

rep(Q, B)2.
The GIT-cone of « with respect to 3:

C(B)a ={a" e D(B)|rep(Q, B){, -y € rep(Q. B) o -y}
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Let @ be any acyclic quiver.

The semi-stable locus of « with respect to 5 is

rep(Q, B)2.
The GIT-cone of « with respect to 3:

C(B)a ={a" e D(B)|rep(Q, B) .-y S rep(Q, B) (o -y}

This consists of all effective weights “weaker” than a.
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The GIT-cone

Let @ be any acyclic quiver.

The semi-stable locus of a with respect to [ is:

rep(Q7/3)?Z,—)
The GIT-cone of a with respect to 5:

C(B)a = {a € D(B)|rep(Q. B)F_, € rep(Q, A)T5ry)

This consists of all effective weights “weaker” than a.
The GIT-fan associated to (Q,3) is:

F(B) = {C(B)ala e D(B)} L {0}



A fan is finite a collection of (rational convex polyhedral) cones
satisfying some additional properties. It is said to be pure of

dimension n if all cones that are maximal with respect to inclusion
are of dimension n.
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A few remarks about fans

A fan is finite a collection of (rational convex polyhedral) cones
satisfying some additional properties. It is said to be pure of
dimension n if all cones that are maximal with respect to inclusion
are of dimension n.

Theorem

F(p) is a finite fan cover of D(3), and if 3 is a Schur root, then
F(B) is a pure fan of dimension |Qo| — 1.
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are of dimension n.

Theorem

F(p) is a finite fan cover of D(3), and if 3 is a Schur root, then
F(B) is a pure fan of dimension |Qo| — 1.

A very useful property of pure fans for our result is the following:



A few remarks about fans

A fan is finite a collection of (rational convex polyhedral) cones
satisfying some additional properties. It is said to be pure of
dimension n if all cones that are maximal with respect to inclusion
are of dimension n.

Theorem

F(p) is a finite fan cover of D(3), and if 3 is a Schur root, then
F(B) is a pure fan of dimension |Qo| — 1.

A very useful property of pure fans for our result is the following:

(Keicher, 2012) Let ¥ ¢ Q" be a pure n-dimensional fan with
convex support |X|, and let 7 € ¥ be such that 7 n|X|° + @. Then
7 is the intersection over all o € £(™ satisfying 7 < 0.



Set

Z ={C(B)alf is a Schur root and C(/3), is maximal}

Io={CeZlaeC}
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Set

Z ={C(B)alf is a Schur root and C(/3), is maximal}

Io={CeZlaeC}

Let Q be a connected, acyclic quiver. For a, g € QQO, a1 ~GIT 2
if and only if L, = 1,,
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Set

Z ={C(B)alf is a Schur root and C(/3), is maximal}

Io={CeZlaeC}

Let Q be a connected, acyclic quiver. For a, g € QQO, a1 ~GIT O
if and only if L, = 1,,

That is, we have a collection of cones parametrized by Schur roots
which characterizes GIT-equivalence classes.
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Assume Z,,, =7,

o

a
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Assume Z,,, =7,

If 5 is (a1, —)-stable, then oy € D(3)°, and of course ay € C(f)q,-
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Assume I, =1y,

If 5 is (o1, —)-stable, then a3 € D(B)°, and of course ay € C()q,-
We can apply Keicher's result to conclude that C(3),, is an
intersection of all maximal cones of which it is a face.
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Idea of Proof

Assume I, = 1,,

If 8 is (a1, —)-stable, then ay € D(5)°, and of course ag € C(3)a,-
We can apply Keicher's result to conclude that C(3),, is an
intersection of all maximal cones of which it is a face.

By the assumption, any such maximal cone contains a; as well.
So, az € C(B)a,. Similarly, a1 € C(8)a,-



Idea of Proof

Assume I, = 1,,

If 8 is (a1, —)-stable, then ay € D(5)°, and of course ag € C(3)a,-
We can apply Keicher's result to conclude that C(3),, is an
intersection of all maximal cones of which it is a face.

By the assumption, any such maximal cone contains a; as well.
So, az € C(B)a,. Similarly, a1 € C(8)a,-

Now, if 8 is arbitrary, use a JH-filtration to break it into a sum of
(g, —)-stable factors.



defined by IPT.

If Q is tame, the collection of cones Z is exactly the collection J
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If Q is tame, the collection of cones Z is exactly the collection J
defined by IPT.

Precisely, C; is a maximal GIT-cone, namely C(d),, where
1 =0+ je Xita B
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The tame case

If Q is tame, the collection of cones Z is exactly the collection J
defined by IPT.

Precisely, C; is a maximal GIT-cone, namely C(9),

a1 =06+ $jus Tit1 By
Main ingredients in proof:

, Where

» Realize C; as the orbit cone of a representation: Q(Z;), where
Z; is a direct sum of Z;, where Z; is the unique ¢ dimensional
representation with regular socle of dimension f;,,.



The tame case

If Q is tame, the collection of cones Z is exactly the collection J
defined by IPT.

Precisely, C; is a maximal GIT-cone, namely C(4)q, where

a1 =0+ Ljea Tl By

Main ingredients in proof:

» Realize C; as the orbit cone of a representation: Q(Z;), where
Z; is a direct sum of Z;, where Z; is the unique ¢ dimensional
representation with regular socle of dimension f;,,.

» Show that the Z;'s and the homogeneous J-dimensional
representations are the only d-dimensional representations
which are polystable with respect to the weight
a1 =0+ Lja LI By



The tame case

If Q is tame, the collection of cones Z is exactly the collection J
defined by IPT.

Precisely, C; is a maximal GIT-cone, namely C(4)q, where
=0+ Ljea ikt By

Main ingredients in proof:

» Realize C; as the orbit cone of a representation: Q(Z;), where
Z; is a direct sum of Z;, where Z; is the unique ¢ dimensional
representation with regular socle of dimension f;,,.

» Show that the Z;'s and the homogeneous J-dimensional

representations are the only d-dimensional representations
which are polystable with respect to the weight
a1 =6+ Tjea Dty B

» Invoke a result that C(5)q = NQ(W) (Chindris, “On GIT
Fans for Quivers")



Let @ = Ay

1

*2
\_/{

<O «Fr «=>»

«=>»

Q>



Let Q = A]_Z

R
] )
\_j

Real Roots: (n,n+1) and (n+1,n) for n>0

«O» «Fr « =>»

« =

DA



Let Q = A]_Z

T
® 2
\_/r

Real Roots: (n,n+1) and (n+1,n) for n>0
Isotropic Roots: (n,n) for n> 1.
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Let Q = A]_Z

T
® 2
\_/r

Real Roots: (n,n+1) and (n+1,n) for n>0
Isotropic Roots: (n,n) for n> 1.

In particular, 6 = (1,1) is the unique isotropic Schur root
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Let Q = A]_Z

/\.2
\_/f

®

Real Roots: (n,n+1) and (n+1,n) for n>0
Isotropic Roots: (n,n) for n> 1.

In particular, 6 = (1,1) is the unique isotropic Schur root.
D((0,1)) is generated by (1,2) and (-1,-2)
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Let Q = A]_Z

T
® 2
\_/r

Real Roots: (n,n+1) and (n+1,n) for n>0

Isotropic Roots: (n,n) for n> 1.

In particular, 6 = (1,1) is the unique isotropic Schur root.
D((0,1)) is generated by (1,2) and (-1,-2)

D((1,0)) is generated by (0,1) and (0,-1)
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Example

Let @ :Ali

T
] )
\_/r

Real Roots: (n,n+1) and (n+1,n) for n>0

Isotropic Roots: (n,n) for n> 1.

In particular, 6 = (1,1) is the unique isotropic Schur root.
D((0,1)) is generated by (1,2) and (-1,-2)

D((1,0)) is generated by (0,1) and (0,-1)

For n>1, D((n,n+1)) is generated by (n+1,n+2), and
D((n+1,n)) is generated by (n,n—1).



Example

Let @ :Ali

T
] )
\_/r

Real Roots: (n,n+1) and (n+1,n) for n>0

Isotropic Roots: (n,n) for n> 1.

In particular, 6 = (1,1) is the unique isotropic Schur root.
D((0,1)) is generated by (1,2) and (-1,-2)

D((1,0)) is generated by (0,1) and (0,-1)

For n>1, D((n,n+1)) is generated by (n+1,n+2), and
D((n+1,n)) is generated by (n,n—1).

Lastly, D(0) is generated by 0.
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7,

Rays extending

through lattice
points of y = x +1
and y = x -1
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Two weights a3
and ap are GIT
equivalent if and
only if they are on
the same collection
of rays.
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[ In this case, since
// the intersection of

s any two rays is
y / / (0,0), we have that
Q1,00 are

GIT-equivalent if
P E o 5 they are

. » both = (0,0)
/ » both in the

- same ray, i.e.,
a1 = Ao for
/ Ly some A eQ
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» How can we get our hands on these maximal GIT-cones of
Schur roots for wild quivers?

» Would a similar result hold, using similar techniques, for
quivers with relations?
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Let Q = Az:

®0

SN

1 ®

<O <& <
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Let Q = Ay:

We want to give an idea of the cones in Z. Recall that

Z={C(0)a,}1erU{D(B)}z

where the union is over all real Schur roots 3.
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Starting with the dimension vectors of the projective and injective

indecomposables, and applying the A-R translate, we get infinitely
many real Schur roots:
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Example

Starting with the dimension vectors of the projective and injective
indecomposables, and applying the A-R translate, we get infinitely
many real Schur roots:

dimPo = (1,0,1) > (223) 5 (434) 5 (556)
dimP; = (1,1,2) > (323) > (445) > (6,5.6)
dimP, = (0,0,1) > (212) S (334) 5 (545)
diml = (1,1,0) & (232) 5> (443) 5 (565)
dimh =(0,1,0) 5 (221) 5 (343) 5 (554)
dimh = (1,2,1) - (332) > (454) - (6,65)

pem



Example

Starting with the dimension vectors of the projective and injective
indecomposables, and applying the A-R translate, we get infinitely
many real Schur roots:

dimPo = (1,0,1) > (223) 5 (434) 5 (556)
dimP; = (1,1,2) > (323) > (445) > (6,5.6)
dimP, = (0,0,1) > (212) S (334) 5 (545)
diml = (1,1,0) & (232) 5> (443) 5 (565)
dimh =(0,1,0) 5 (221) 5 (343) 5 (554)
dimh = (1,2,1) - (332) > (454) - (6,65)

Each one of these real Schur roots will correspond to a D(3) € Z.
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For example, if we take

B =1(0,0,1), we have D(f) is
generated by

-dimPy = (-1,0,-1),

—-dimP; = (-1,-1,-2) and
(1,0,1), which is —(—, 3)-stable.
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For example, if we take

B =(0,0,1), we have D(3) is
generated by

-dimPy = (-1,0,-1),

—-dimP; = (-1,-1,-2) and
(1,0,1), which is —(—, 3)-stable.

Thus, D(S3) looks like:
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If we take 3 =(1,1,2), which is
sincere, we have D(f) is

generated by (0,1,1) and
(2,1,2) which are both

—(-, B)-stable.
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If we take 3 =(1,1,2), which is
sincere, we have D(f) is

generated by (0,1,1) and
(2,1,2) which are both

—(-, B)-stable.

Thus, D(B) looks like:
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Now, turning to the regular representations, we have § = (1,1,1).
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Now, turning to the regular representations, we have § = (1,1,1).
If 8 =(x,y,z) is quasi-simple, it must satisfy:

((5,ﬂ)=y—z:0
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Now, turning to the regular representations, we have § = (1,1,1).
If 8 =(x,y,z) is quasi-simple, it must satisfy:

((5,ﬂ)=y—z:0
(5,5)=X2+y2+22—xy—xz—yz=1

«O» «Fr « =>»

« =

DA



Now, turning to the regular representations, we have § = (1,1,1).
If 8 =(x,y,z) is quasi-simple, it must satisfy:

((5,ﬂ)=y—z:0
(B,B)=x*+y*-2xy =1
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Now, turning to the regular representations, we have § = (1,1,1)
If 8 =(x,y,z) is quasi-simple, it must satisfy:

((5,ﬂ)=y—z:0
(B,B)=x*+y*-2xy =1

B<6, ie,x<ly<l z<1
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Example

Now, turning to the regular representations, we have § = (1,1,1).
If B=(x,y,z) is quasi-simple, it must satisfy:

<5,B>=y—2=0
(B,8) =x>+y*—2xy =1
B<6, ie,x<ly<l z<1

So, the only quasi-simples are (0,1,1) and (1,0,0). That is, we
have a single non-homogeneous tube in the regular component of
the A-R quiver, and it has period 2.



Example

Now, turning to the regular representations, we have § = (1,1,1).
If B=(x,y,z) is quasi-simple, it must satisfy:

<5,B>=y—2=0
(B,8) =x>+y*—2xy =1
B<6, ie,x<ly<l z<1

So, the only quasi-simples are (0,1,1) and (1,0,0). That is, we
have a single non-homogeneous tube in the regular component of
the A-R quiver, and it has period 2.

Now, f11 =(0,1,1) and B12 = (1,0,0) are themselves real Schur
roots, and so D(f11) and D(P12) are in Z.



Lastly, we need the C(6)q,'s

«O» «Fr « =>»

« =

DA



Lastly, we need the C(4)q4,'s.

For I = (1), we have

oy = 5+ﬂ12 = (2,1,1) and
C(9)q, is generated, as a cone,
by (1,1,1) and (1,0,0).
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Lastly, we need the C(4)q4,'s.

For I = (1), we have

oy = 5+ﬂ12 = (2,1,1) and
C(9)q, is generated, as a cone,
by (1,1,1) and (1,0,0).

For I = (2), we have

o = 5+,311 = (1,2,2) and
C(9)q, is generated, as a cone,
by (1,1,1) and (0,1,1).
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Lastly, we need the C(4)q4,'s.
For I = (1), we have

oy = 0+ ,812 = (2, 1, 1) and
C(9)q, is generated, as a cone,
by (1,1,1) and (1,0,0). >
For I = (2), we have

o = 5+,311 = (1,2,2) and
C(9)q, is generated, as a cone,

by (1,1,1) and (0,1,1).

[Animation with many of the cones from Z]




