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Brauer trees

Let k be an algebraically closed field of arbitrary characteristic.

Definition

A Brauer tree T is a finite, connected, undirected, acyclic
graph together with a counterclockwise ordering of the edges
emanating from each vertex, along with a single exceptional
vertex assigned with a positive integer value, called the
multiplicity.

m=3



Versal
Deformation

Rings of
Modules over
Brauer Tree

Algebras

Dan Wackwitz

Definitions

Brauer tree
algebras

Versal
deformation
rings

Results

Brauer tree algebras

A finite dimensional k-algebra Λ is called a Brauer tree algebra
if there is a related Brauer tree T (Λ) which encodes all
projective indecomposable Λ-modules.
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1

2 m=3

For this Brauer tree, the related Brauer tree algebra Λ has the
following projective indecomposable modules:
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Some properties of Brauer tree algebras

Brauer tree algebras are:

special biserial

symmetric, thus self injective

finite representation type

For any finite group G with char(k)|#G , if the group ring kG
is of finite representation type, then kG is a direct sum of
Brauer tree algebras and matrix algebras over k.
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The versal deformation ring of a module

Let Ĉ be the category of complete local Noetherian
commutative k-algebras, and R ∈ Ob(Ĉ). Let V be a finitely
generated Λ-module.

Definition

A lift of V over R is an R ⊗k Λ-module M which is free as an
R-module together with a Λ-module isomorphism
φ : k ⊗R M → V .

We say V has a versal deformation ring R(Λ,V ) in Ĉ if every
isomorphism class of lifts of V over every R ∈ Ob(Ĉ) arises
from a (not necessarily unique) k-algebra homomorphism from
R(Λ,V ) to R. In addition, when R = k[ε]/(ε2), the k-algebra
homomorphism is unique.
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Properties

For a Brauer tree algebra Λ, we have that every
indecomposable Λ-module V has a versal deformation ring.

The versal deformation ring for V is of the form
k[[t1, . . . , tn]]/J for some ideal J, where the following
properties hold:

the dimension of Ext1
Λ(V ,V ) is the minimal number of

necessary variables ti

the dimension of Ext2
Λ(V ,V ) is an upper bound on the

minimal number of generators for the ideal J
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Properties of R(Λ,V ) for Brauer tree algebras

For a Brauer tree algebra Λ with e edges and exceptional vertex
with multiplicity m, there are exactly me2 non-projective
indecomposable Λ-modules.

The stable Auslander-Reiten (AR) quiver is an e-tube, and
because Λ is symmetric, the syzygy functor Ω induces an
automorphism of the AR quiver, and for any non-projective
indecomposable Λ-module V , Ω2(V ) is the AR-translate of V .

The versal deformation ring of V is uniquely determined by the
length of the shortest path from V to the closest boundary on
the stable Auslander-Reiten quiver of Λ.
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Example

Consider the Brauer tree T with one edge and multiplicity 3:

1
m=3

The related Brauer tree algebra Λ is k[α]/(α4), and the only
indecomposable Λ-modules are uniserial of length 1 ≤ i ≤ 4.

Consider the module V = 1
1 , for which dimkExt1

Λ(V ,V ) = 2.
The versal deformation ring R(Λ,V ) for this module is
k[t1, t2]/(t2

1 t2 + t2
2 , t

3
1 + 2t1t2).

A particular lift over R(Λ,V ) has α acting as the matrix
(

0 t2
1 t1

)
,

and the entries of α4 determine the ideal for R(Λ,V ).
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Results

Let Λ be the Brauer tree algebra related to the star Brauer tree
with e edges and multiplicity m, and let Ui be the uniserial
module with top 1 of length 1 ≤ i ≤ e.

1
2

i

Ui :

Define V0 = Ue
Ue

, and Vj =
Ue
Ue
Uj

, 1 ≤ j < e.

These modules (given sufficiently large m) and their
Ω-translates are all the Λ-modules with dimkExt1

Λ(V ,V ) = 2.
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Define gn =
∑d n

2
e

i=1

(
n−i
i−1

)
tn+1−2i
1 t i−1

2 , fn = t2gn−1 and
Jn =< fn, gn >.

Theorem

For e = 1,m ≥ 3, we have:

R(Λ,V0) ∼= k[t1, t2]/Jm+1

For e > 1,m = 4, we have:

R(Λ,V0) ∼= k[t1, t2]/J4

For e > 1,m ≥ 5, we have:

R(Λ,Vj) ∼=
{

k[t1, t2]/Jm : j = 0, 1
k[t1, t2]/Jm−1 : 2 ≤ j < e
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Thank you!
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