Versal Deformation Rings of Modules over Brauer Tree Algebras

Dan Wackwitz

Definitions

Brauer tree algebras Versal deformatior rings

Results

Versal Deformation Rings of Modules over Brauer Tree Algebras

Dan Wackwitz

University of Iowa Department of Mathematics

Geometric Methods in Representation Theory November 24, 2014

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Brauer trees

Versal Deformation Rings of Modules over Brauer Tree Algebras

Dan Wackwitz

Definitions

Brauer tree algebras Versal

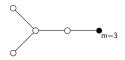
deformatio rings

Results

Let k be an algebraically closed field of arbitrary characteristic.

Definition

A Brauer tree T is a finite, connected, undirected, acyclic graph together with a counterclockwise ordering of the edges emanating from each vertex, along with a single exceptional vertex assigned with a positive integer value, called the multiplicity.



Brauer tree algebras

Versal Deformation Rings of Modules over Brauer Tree Algebras

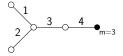
Dan Wackwitz

Definitions

Brauer tree algebras Versal deformation rings

Results

A finite dimensional k-algebra Λ is called a Brauer tree algebra if there is a related Brauer tree $T(\Lambda)$ which encodes all projective indecomposable Λ -modules.



For this Brauer tree, the related Brauer tree algebra Λ has the following projective indecomposable modules:

$$P_{1}: \frac{1}{3} \qquad P_{2}: \frac{2}{1} \qquad P_{3}: \frac{1}{2}^{3} \qquad P_{4}: \frac{3}{4}$$

Some properties of Brauer tree algebras

Versal Deformation Rings of Modules over Brauer Tree Algebras

Dan Wackwitz

Definitions

Brauer tree algebras Versal deformation

Results

Brauer tree algebras are:

- special biserial
- symmetric, thus self injective
- finite representation type

For any finite group G with char(k)|#G, if the group ring kG is of finite representation type, then kG is a direct sum of Brauer tree algebras and matrix algebras over k.

The versal deformation ring of a module

Versal Deformation Rings of Modules over Brauer Tree Algebras

Dan Wackwitz

Definitions

Brauer tree algebras

Versal deformation rings

Results

Let \hat{C} be the category of complete local Noetherian commutative *k*-algebras, and $R \in Ob(\hat{C})$. Let *V* be a finitely generated Λ -module.

Definition

A lift of V over R is an $R \otimes_k \Lambda$ -module M which is free as an R-module together with a Λ -module isomorphism $\phi : k \otimes_R M \to V$.

We say V has a versal deformation ring $R(\Lambda, V)$ in \hat{C} if every isomorphism class of lifts of V over every $R \in Ob(\hat{C})$ arises from a (not necessarily unique) k-algebra homomorphism from $R(\Lambda, V)$ to R. In addition, when $R = k[\epsilon]/(\epsilon^2)$, the k-algebra homomorphism is unique.

Properties

Versal Deformation Rings of Modules over Brauer Tree Algebras

Dan Wackwitz

Definitions

Brauer tree algebras

Versal deformation rings

Results

For a Brauer tree algebra Λ , we have that every indecomposable Λ -module V has a versal deformation ring.

The versal deformation ring for V is of the form $k[[t_1, \ldots, t_n]]/J$ for some ideal J, where the following properties hold:

- the dimension of Ext¹_Λ(V, V) is the minimal number of necessary variables t_i
- the dimension of Ext²_Λ(V, V) is an upper bound on the minimal number of generators for the ideal J

Properties of $R(\Lambda, V)$ for Brauer tree algebras

Versal Deformation Rings of Modules over Brauer Tree Algebras

Dan Wackwitz

Definitions

Brauer tree algebras

Versal deformation rings

Results

For a Brauer tree algebra Λ with *e* edges and exceptional vertex with multiplicity *m*, there are exactly me^2 non-projective indecomposable Λ -modules.

The stable Auslander-Reiten (AR) quiver is an *e*-tube, and because Λ is symmetric, the syzygy functor Ω induces an automorphism of the AR quiver, and for any non-projective indecomposable Λ -module V, $\Omega^2(V)$ is the AR-translate of V.

The versal deformation ring of V is uniquely determined by the length of the shortest path from V to the closest boundary on the stable Auslander-Reiten quiver of Λ .

Example

Versal Deformation Rings of Modules over Brauer Tree Algebras

Dan Wackwitz

Definitions

Brauer tree algebras Versal deformation rings

Results

Consider the Brauer tree T with one edge and multiplicity 3: $0 - \frac{1}{2} = \frac{1}{2}$

The related Brauer tree algebra Λ is $k[\alpha]/(\alpha^4)$, and the only indecomposable Λ -modules are uniserial of length $1 \le i \le 4$.

Consider the module $V = \frac{1}{1}$, for which dim_kExt¹_A(V, V) = 2. The versal deformation ring $R(\Lambda, V)$ for this module is $k[t_1, t_2]/(t_1^2t_2 + t_2^2, t_1^3 + 2t_1t_2)$.

A particular lift over $R(\Lambda, V)$ has α acting as the matrix $\begin{pmatrix} 0 & t_2 \\ 1 & t_1 \end{pmatrix}$, and the entries of α^4 determine the ideal for $R(\Lambda, V)$.

Results

Versal Deformation Rings of Modules over Brauer Tree Algebras

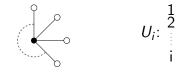
Dan Wackwitz

Definitions

Brauer tree algebras Versal deformation rings

Results

Let Λ be the Brauer tree algebra related to the star Brauer tree with *e* edges and multiplicity *m*, and let U_i be the uniserial module with top 1 of length $1 \le i \le e$.



Define
$$V_0 = egin{array}{c} U_e \ U_e \ U_e \end{array}$$
 , and $V_j = egin{array}{c} U_e \ U_e \ U_j \end{array}, 1 \leq j < e.$

These modules (given sufficiently large *m*) and their Ω -translates are all the Λ -modules with dim_kExt¹_{Λ}(*V*, *V*) = 2.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Versal Deformation Rings of Modules over Brauer Tree Algebras

Dan Wackwitz

Definitions

Brauer tree algebras Versal deformation rings

Results

Define
$$g_n = \sum_{i=1}^{\lceil \frac{n}{2} \rceil} {\binom{n-i}{i-1}} t_1^{n+1-2i} t_2^{i-1}$$
, $f_n = t_2 g_{n-1}$ and $J_n = \langle f_n, g_n \rangle$.

Theorem

For $e = 1, m \ge 3$, we have:

$$R(\Lambda, V_0) \cong k[t_1, t_2]/J_{m+1}$$

For e > 1, m = 4, we have:

 $R(\Lambda, V_0) \cong k[t_1, t_2]/J_4$

For $e > 1, m \ge 5$, we have:

 $R(\Lambda, V_j) \cong \begin{cases} k[t_1, t_2]/J_m & : j = 0, 1\\ k[t_1, t_2]/J_{m-1} & : 2 \le j < e \end{cases}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Versal Deformation Rings of Modules over Brauer Tree Algebras

Dan Wackwitz

Definitions

Brauer tree algebras Versal deformation rings

Results

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?