A proof of the independence of the surface integral with respect to parameterization

The surface integral should be independent of the way in which we parameterize the surface: suppose we have a parameterization of a surface Σ by $\mathbf{r} = \mathbf{r}(u, v)$ where (u, v) lie in a region U. Suppose that we have another parameterization given by u = u(w, z) and v = v(w, z) where (w, z) lie in a region W.

Theorem.

$$\int \int_{\Sigma} f(\mathbf{r}) dS = \int \int_{U} f(\mathbf{r}(u, v)) \| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \| du dv$$

$$= \int \int_{W} f(\mathbf{r}(u(w, z), v(w, z)) \| \frac{\partial \mathbf{r}}{\partial w} \times \frac{\partial \mathbf{r}}{\partial z} \| dw dz.$$

Proof. We need to compute $\partial \mathbf{r}/\partial w \times \partial \mathbf{r}/\partial z$ in terms of $\partial \mathbf{r}/\partial u$ and $\partial \mathbf{r}/\partial v$:

$$\frac{\partial \mathbf{r}}{\partial w} = \frac{\partial \mathbf{r}}{\partial u} \frac{\partial u}{\partial w} + \frac{\partial \mathbf{r}}{\partial v} \frac{\partial v}{\partial w},$$

$$\frac{\partial \mathbf{r}}{\partial z} = \frac{\partial \mathbf{r}}{\partial u} \frac{\partial u}{\partial z} + \frac{\partial \mathbf{r}}{\partial v} \frac{\partial v}{\partial z}.$$

Thus

$$\frac{\partial \mathbf{r}}{\partial w} \times \frac{\partial \mathbf{r}}{\partial z} = \left(\frac{\partial \mathbf{r}}{\partial u} \frac{\partial u}{\partial w} + \frac{\partial \mathbf{r}}{\partial v} \frac{\partial v}{\partial w} \right) \times \left(\frac{\partial \mathbf{r}}{\partial u} \frac{\partial u}{\partial z} + \frac{\partial \mathbf{r}}{\partial v} \frac{\partial v}{\partial z} \right)
= \left(\frac{\partial u}{\partial w} \frac{\partial v}{\partial z} - \frac{\partial u}{\partial z} \frac{\partial v}{\partial w} \right) \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right)
= \frac{\partial (u, v)}{\partial (w, z)} \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}$$

SO

$$\int \int_{W} f(\mathbf{r}(u(w,z), v(w,z)) \| \frac{\partial \mathbf{r}}{\partial w} \times \frac{\partial \mathbf{r}}{\partial z} \| dw dz$$

$$= \int \int_{W} f(\mathbf{r}(u(x,z), v(w,z)) \left| \frac{\partial (u,v)}{\partial (w,z)} \right| \left\| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right\| dw dz$$

$$= \int \int_{U} f(\mathbf{r}(u,v)) \left\| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right\| du dv$$

as we wanted.

A proof of Stoke's theorem

Theorem. Suppose that Σ is an oriented surface which is parameterized by $\mathbf{r} = \mathbf{r}(u,v)$ for (u,v) in a region U in the plane. Suppose that the normal vector \mathbf{n} for Σ at $\mathbf{r}(u,v)$ is in the direction of $\partial \mathbf{r}/\partial u \times \partial \mathbf{r}/\partial v$. Then

$$\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int \int_{\Sigma} curl \, \mathbf{F}(\mathbf{r}) \cdot \mathbf{n}(\mathbf{r}) \, dS$$

where C is the boundary of Σ (oriented consistently with Σ).

Proof. Suppose that the boundary C of Σ is the image of the boundary C' of U in the plane. Then

$$\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{C'} \mathbf{F}(\mathbf{r}(u,v)) \cdot \left(\frac{\partial \mathbf{r}}{\partial u} du + \frac{\partial \mathbf{r}}{\partial v} dv \right)
= \int_{U} \left(\frac{\partial}{\partial u} \left(\mathbf{F}(\mathbf{r}(u,v)) \cdot \frac{\partial \mathbf{r}}{\partial v} \right) - \frac{\partial}{\partial v} \left(\mathbf{F}(\mathbf{r}(u,v)) \cdot \frac{\partial \mathbf{r}}{\partial u} \right) \right) du dv
= \int_{U} \left(\frac{\partial}{\partial u} \left(\mathbf{F}(\mathbf{r}(u,v)) \right) \cdot \frac{\partial \mathbf{r}}{\partial v} - \frac{\partial}{\partial v} \left(\mathbf{F}(\mathbf{r}(u,v)) \right) \cdot \frac{\partial \mathbf{r}}{\partial u} \right) du dv$$

Note that

$$\frac{\partial}{\partial u} \left(\mathbf{F} (\mathbf{r}(u, v)) \right) = \frac{\partial \mathbf{F}}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial \mathbf{F}}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial \mathbf{F}}{\partial z} \frac{\partial z}{\partial u}$$

Then

$$\int \int_{U} \left(\frac{\partial}{\partial u} \left(\mathbf{F}(\mathbf{r}(u, v)) \right) \cdot \frac{\partial \mathbf{r}}{\partial v} - \frac{\partial}{\partial v} \left(\mathbf{F}(\mathbf{r}(u, v)) \right) \cdot \frac{\partial \mathbf{r}}{\partial u} \right) du \, dv =$$

$$\int \int_{U} \left(\frac{\partial \mathbf{F}}{\partial x} \cdot \left(\frac{\partial x}{\partial u} \frac{\partial \mathbf{r}}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial \mathbf{r}}{\partial u} \right) + \dots + \frac{\partial \mathbf{F}}{\partial z} \cdot \left(\frac{\partial z}{\partial u} \frac{\partial \mathbf{r}}{\partial v} - \frac{\partial z}{\partial v} \frac{\partial \mathbf{r}}{\partial u} \right) \right) du \, dv$$

Using $\mathbf{F}(\mathbf{r}) = M(\mathbf{r})\mathbf{i} + N(\mathbf{r})\mathbf{j} + P(\mathbf{r})\mathbf{k}$, the first term of the above integrand is

$$\begin{split} \frac{\partial M}{\partial x} \left(\frac{\partial x}{\partial u} \frac{\partial x}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial x}{\partial u} \right) + \frac{\partial N}{\partial x} \left(\frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} \right) + \frac{\partial P}{\partial x} \left(\frac{\partial x}{\partial u} \frac{\partial z}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial z}{\partial u} \right) \\ &= \mathbf{k} \frac{\partial N}{\partial x} \cdot \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right) - \mathbf{j} \frac{\partial P}{\partial x} \cdot \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right) \\ &= \left(\mathbf{k} \frac{\partial N}{\partial x} - \mathbf{j} \frac{\partial P}{\partial x} \right) \cdot \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right) \end{split}$$

Note that $\mathbf{k}(\partial N/\partial x) - \mathbf{j}(\partial P/\partial x)$ is the part of curl **F** that involves derivatives with respect to x. Adding the the other terms in the integrand, we get

$$\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int \int_{U} \operatorname{curl} \mathbf{F}(\mathbf{r}(u, v)) \cdot \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right) du dv$$
$$= \int \int_{\Sigma} \operatorname{curl} \mathbf{F}(\mathbf{r}) \cdot \mathbf{n}(\mathbf{r}) dS$$