A proof of the independence of the surface in-
tegral with respect to parameterization

The surface integral should be independent of the way in which we param-
eterize the surface: suppose we have a parameterization of a surface ¥ by
r = r(u,v) where (u,v) lie in a region U. Suppose that we have another
parameterization given by v = u(w, z) and v = v(w, z) where (w, z) lie in a

region W.
Theorem.
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Proof. We need to compute dr/0w x dr/0z in terms of dr/0u and Or/dv:
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as we wanted.



A proof of Stoke’s theorem

Theorem. Suppose that ¥ is an oriented surface which is parameterized by
r = r(u,v) for (u,v) in a region U in the plane. Suppose that the normal
vector n for ¥ at r(u,v) is in the direction of Or/0u x Or/dv. Then
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where C' is the boundary of X2 (oriented consistently with 3).

Proof. Suppose that the boundary C' of ¥ is the image of the boundary
C' of U in the plane. Then
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Using F(r) = M(r)i+ N(r)j + P(r)k, the first term of the above integrand
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Note that k(ON/0x)—j(0P/0x) is the part of curl F that involves derivatives
with respect to z. Adding the the other terms in the integrand, we get

/CF(r) ~dr = //Ucurl F(r(u,v)) - (% X %) du dv
= //ZcurlF(r)-n(r) ds



