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A MULTISCALE MODEL OF BIOFILM AS A
SENESCENCE-STRUCTURED FLUID∗
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Abstract. We derive a physiologically structured multiscale model for biofilm development. The
model has components on two spatial scales, which induce different time scales into the problem. The
macroscopic behavior of the system is modeled using growth-induced flow in a domain with a moving
boundary. Cell-level processes are incorporated into the model using a so-called physiologically
structured variable to represent cell senescence, which in turn affects cell division and mortality.
We present computational results for our models which shed light on modeling the combined role
senescence and the biofilm state play in the defense strategy of bacteria.
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1. Introduction. In this paper, we derive a physiologically structured multiscale
model for biofilm development. The model has components on two spatial scales,
which induce different time scales into the problem. The macroscopic behavior of the
system is modeled using growth-induced flow in a domain with a moving boundary,
following [1, 11]. Cell-level processes are incorporated into the model using a so-called
physiologically structured variable to represent cell senescence, which in turn affects
cell division and mortality. We use “senescence” to mean “the organic process of
growing older and showing the effects of increasing age.”1

The multiscale nature of physiologically and spatially structured population mod-
els, such as those in this paper and in [3, 6, 12, 13], differs from more typical multiscale
systems where the smaller spatial scales have the faster time scales. In the structured
multiscale systems, the dynamics of the relevant physiology of individuals within a
population are homogenized to a distribution of a representative trait such as age,
size, or senescence. Although the underlying physiological system may have a very
fast time scale (such as the protein network within a cell that controls the cell cycle),
the distribution of the representative trait may evolve relatively slowly compared to
the dynamics in space or in the reaction terms (such as the age distributions used
to represent a tumor cell’s position in the cell cycle in [6] or a Proteus mirabilis
multinuclear filament cell’s length in [3, 12]).

The derivation of the model in this paper follows that of Alpkvist and Klapper [1],
with the addition of the explicit physiological structure in the bacteria populations
based on the notion of bacteria senescence demonstrated in [24] for cells with sym-
metric division and [8, 21] for cells with asymmetric division. We also include explicit
tracking of inert-cell populations, which includes necrotic cells.
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To our knowledge, prior to this work, physiological structure has been integrated
only into spatial models where motion is due to migration or taxis, represented by
diffusion terms in the model equations [3, 6, 12, 13]. Here, instead, motion is driven by
growth-induced expansive stress, a much different mechanism that requires inclusion
of a force balance equation.

This paper is organized as follows. We first motivate the problem subject and
derive the structured multiscale model of biofilm growth. Following this, we present
a nondimensionalization and then a spatially homogeneous steady-state age distribu-
tion, which in combination help to illustrate the differing age structures occurring
in different places in the biofilm. Finally, we provide computational results for our
models which shed light on the combined role senescence and the self-organization
into a biofilm state play in the defensive capabilities of bacteria.

2. Biofilms and age dependence. A biofilm is a collection of microorganisms,
typically bacteria, enclosed within a self-secreted polymeric matrix. These films are
generally attached on one side to a solid boundary and, on the other, access substrates
(e.g., oxygen) through a free surface (Figure 1). See [25] for a review. Biofilm proper-
ties change over long times (weeks)—it is possible to describe a maturation process in
the development of a particular biofilm. That is, biofilms demonstrate aging effects.
We are thus motivated to extend basic biofilm models to include age dependence.

In fact, it seems that individual bacteria themselves suffer age dependence in the
form of senescence. This property had been observed for some time in asymmetric
dividers [8, 21]; more recently, senescence has also been noted in the symmetric di-
vider Escherichia coli [24]. Under normal conditions, senescent cells make up a small
percentage of the total population. However, aging (over medium time scales) may
provide an effective defense against short time scale environmental disruptions but
without affecting microbial community vitality during normal conditions. That is,
we posit that multitime scale behavior allows a powerful defense mechanism. In a
recent paper [18], it was argued that cell senescence offers a simple explanation for
the phenomenon of bacterial persistence. Bacteria exhibit the phenomenon of “persis-
tence,” the tendency for a small number of cells within a larger population to tolerate
a wide range of antimicrobial challenges [7, 14, 17]. In particular, the mechanism for
this tolerance was suggested to be that senescent cells were less active and hence less
susceptible than younger, more vigorous ones. Then, once the antimicrobial attack
ceases, the persisting cells could produce new, vital cells which in turn would be ca-
pable of regenerating the colony. Previously, others have argued that persisters were
phenotypic variants [7, 10, 20, 22, 23].

Colony defense through persister cells is likely to be especially effective in biofilms
where surviving persister cells, although perhaps small in number, have the oppor-
tunity to be protected by the biofilm matrix [20]. As a result of this matrix, they
may have a particularly conducive environment for repopulation once the antimicro-
bial challenge has ended. Thus, in order to demonstrate that senescent cells can
distribute themselves throughout the biofilm and as a particular application of our
age-dependent biofilm model, we compute the spatial and temporal variation of age
dependence. These senescent cells are produced on a medium time scale (approxi-
mately 1 day) that is fast relative to the biofilm maturation time but slow compared
to metabolic times. Thus persisters are generated quickly enough so that they can
be an effective defense mechanism for mature biofilms but not so quickly that they
interfere with competitive fitness.
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Fig. 1. Spatial domains for the senescence-structured biofilm model.

3. Derivation of the model. We consider a spatial domain Ω consisting of
stratified subdomains Bt for biomass and Ω\Bt for the bulk fluid. There are two
moving interfaces in Ω: Γt separating Bt from the rest of Ω, and a bulk-substrate
interface ΓHb

that is a fixed height Hb above Γt. The biofilm rests on a surface,
denoted by a lower boundary, ΓB . The spatial domains are illustrated in Figure
1.

We let bi(t,x, a), i = 1, . . . , Nb, denote the densities of the bacteria phenotypes in
time t ≥ 0, space x ∈ Bt, and senescence a ≥ 0, and we let Jb

i denote their respective
fluxes. The component of x representing height is denoted by z. Similarly, ci(t,x),
i = 1, . . . , Nc, denote the substrate concentrations in time t ≥ 0 and space x ∈ Ω, and
Jc
i denotes their respective fluxes. In addition to active cell types, we allow for the

presence of inert cells, including permanently inactive, necrotic, and decomposed cells,
that do not use or produce substrates, do not grow, and are not merely in a quiescent
state. Lack of senescence allows us to list these separately from the bi because these
cells do not have any age dependence. We let ni(t,x) denote inert cells of type bi of
all ages and Jn

i their respective fluxes.

Conservation of biomass yields equations

(3.1)
∂bi
∂t

+
∂(gi(a, c1, . . . , cNc

) bi)

∂a
+ ∇ · Jb

i

= −μ̂i(a, c1, . . . , cNc , b1(t,x, ·), . . . , bNb
(t,x, ·))bi(t,x, a)

+ f̂i(b1(t,x, a), . . . , bNb
(t,x, a)),

for i = 1, . . . , Nb, where μ̂i is the inactivation or “death” modulus with dependence
on senescence, substrate concentrations, and the densities of all bacteria phenotypes
of all ages, and f̂i is the rate of net change to phenotypes i from all other phenotypes.
The term f̂i allows the possibility that bacteria have the capability of changing their
phenotype in response to stimuli. A model that incorporated change due to mutation
would do so in the age boundary condition. The senescence rate gi represents the
physical wear-and-tear experienced by an aging individual in response to nutrient
and/or oxygen uptake and exposure to waste.

Due to the close relationship between senescence and chronological age, for this
paper we make the simplifying assumption that gi ≡ 1 for i = 1, . . . , Nb. Further
below, we will specify senescence as a function of age for use in both the inactivation
modulus, μ̂, and the fecundity, β̂, defined below. Equations (3.1) then become the
age- and space-structured equations
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(3.2)
∂bi
∂t

+
∂bi
∂a

+ ∇ · Jb
i

= −μ̂i(a, c1, . . . , cNc
, b1(t,x, ·), . . . , bNb

(t,x, ·))bi(t,x, a)
+ f̂i(b1(t,x, a), . . . , bNb

(t,x, a)).

Observations in [24] showed that even in symmetric cell division, one of the two
new cells contains older material and overall less vitality than the other (referred to
as “old-pole” and “new-pole” cells, respectively). This results in a physiologically
structured mathematical representation of the bacterial cell cycle that is closer to
that for birth-death processes in animals than what has been commonly used to rep-
resent cell division [6, 26]. These models were built on the assumption that a mother
cell divided into two daughter cells of equal and high vitality, thereby assigning each
daughter cell a senescence of zero and removing the mother cell from the population.
In our old-pole/new-pole formulation, rather, the mother cell remains in the popula-
tion and continues to undergo senescence from the point it had at cell division while
giving rise to a single daughter cell with senescence zero. This notion of senescence
allows two implications, based on the account in [24], that are relevant to the model in
this paper. First, old-pole cells grow slower than new-pole cells produced in the same
division. Second, old-pole cells become inert at a higher rate than new-pole cells.

Although a more elaborate model would include explicit size structure similar
to what was done in models in [6, 26], we can take advantage of continuous senes-
cence and time to incorporate the first old-pole/new-pole issue into a fecundity term,

β̂i(a, c1, . . . , cNc
, b1(t,x, ·), . . . , bNb

(t,x, ·)), with dependence on age, substrate con-
centrations, and the densities of all bacteria phenotypes of all ages. Differences in
individual sizes influence volume fractions, represented by giving mother cells with
larger offspring a corresponding higher fecundity. The fecundities, β̂, account not just
for differences in daughter size due to the mother’s size but also for heterogeneities
in the mean growth rates across phenotypes i. A third more minor property of cell
senescence mentioned in [24], that new-pole cells are marginally more likely to divide

sooner than old-pole cells, can also be included in β̂. (Similarly, we can incorporate
the second property of higher incidence of becoming inert into μ̂i.) The resulting
senescence boundary condition, or “birth” condition,2 is

(3.3) bi(t,x, 0) =

∫ ∞

0

β̂i(a, . . . )bi(t,x, a) da for i = 1, . . . , Nb.

We represent retention of inert cells using Nb inert-cell classes governed by the
conservation equations

(3.4)
∂ni(t,x)

∂t
+ ∇ · Jn

i =

∫ ∞

0

μ̂i(a, . . . )bi(t,x, a) da for i = 1, . . . , Nb.

Conservation of substrate mass yields

(3.5)
∂ci
∂t

+ ∇ · Jc
i = rj , for j = 1, . . . , Nc,

2A model where transition between some of the different classes occurs due to mutation would
have an age boundary condition of the form bi(t,x, 0) =

∑
k Mik

∫∞
0 β̂kbk(t,x, a) da, where Mik is a

matrix with mutation rates in the entries not on the main diagonal, and one minus the sum of those
rates on the main diagonal. The specifics of the entries of Mik would account for which mutations
underlie the different phenotypes. A version with linear progression through phenotype classes was
used in [6].



BIOFILM AS A SENESCENCE-STRUCTURED FLUID 351

where rj denotes gain or loss of the jth substrate concentration through interactions
with the biomass such as consumption or excretion. Assuming Fick’s law gives Jc

j =
−Dj∇cj for constants Dj . The substrate masses are also subject to advection, but
the velocity is sufficiently slow so that we can neglect the advective contribution to
the flux. Likewise, substrate material diffuses several orders of magnitude faster than
the rates at which bacteria grow or advect, allowing us to make a quasi-steady-state
assumption so that

(3.6) −Dj∇2cj = rj for j = 1, . . . , Nc.

We let ϑi(t,x, a) and ρi(t,x, a) denote the volume fraction per age and density
per age relative to volume fraction, respectively, of phenotypes i, so that bi = ρiϑi.
We assume incompressibility of biomass with ρi(t,x) ≡ ρ∗i for positive constants ρ∗i .
We also assume, based on the fact that the main constituent of all cells is water, that
inert cells have the same incompressibility properties, and the same densities relative
to volume fractions, ρ∗i , as active cells. We let ηi(t,x) denote the volume fraction
of inert phenotype i cells, which is related to the density of inert phenotype i cells
by ni = ρ∗i ηi. We assume such cells all behave the same regardless of phenotype,
and track only the total volume fraction of inert cells of all phenotypes, denoted by
N (t,x). Equations (3.4), rewritten as

(3.7)
∂ηi(t,x)

∂t
+

1

ρ∗i
∇ · Jn

i =

∫ ∞

0

μi(a, . . . )ϑi(t,x, a) da, for i = 1, . . . , Nb,

become, after summing over i, the governing equation for the total inert volume
fraction N ,

(3.8)
∂N (t,x)

∂t
+

Nb∑
i=1

1

ρ∗i
∇ · Jn

i = M(t,x),

where

N (t,x) =

Nb∑
i=0

ηi(t,x),(3.9)

M(t,x) =

Nb∑
i=0

∫ ∞

0

μi(a, . . . )ϑi(t,x, a) da.(3.10)

We require the biomass volume fractions to total to one so that

(3.11) N (t,x) +

Nb∑
i=1

∫ ∞

0

ϑi(t,x, a) da = 1.

Assuming that transport of biomass, including inert cells, is governed by an ad-
vective process, with a volumetric flow u(t,x) for all classes and ages, gives the fluxes
Jb
i = ρ∗iϑiu for i = 1 . . . , Nb. Following [1, 11], we assume that the volumetric flow is

stress driven according to

(3.12) u = −λ∇p,

where p(t,x) is the pressure and λ > 0 the Darcy constant. As in [1, 11], p = 0
in Ω\Bt. Pressure is determined in order to enforce incompressibility in response to
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growth (see below), and hence (3.12) can be viewed as a balance of growth-induced
stress against friction. Other choices of force balance are possible.

Substituting bi = ρ∗iϑi and Jb
i = ρ∗iϑiu into equations (3.2) gives, for i =

1, . . . , Nb,

(3.13)
∂ϑi

∂t
+

∂ϑi

∂a
+ ∇ · (uϑi) = −μi(a, c1, . . . , cNc

, ϑ1(t,x, ·), . . . , ϑNb
(t,x, ·))ϑi(t,x, a)

+ fi(ϑ1(t,x, a), . . . , ϑNb
(t,x, a)),

where

(3.14) μi(a, c1, . . . , cNc , ϑ1(t,x, ·), . . . , ϑNb
(t,x, ·))

= μ̂i(a, c1, . . . , cNc
, b1(t,x, ·), . . . , bNb

(t,x, ·))

and

(3.15) fi(ϑ1(t,x, a), . . . , ϑNb
(t,x, a)) =

1

ρ∗i
f̂i(b1(t,x, a), . . . , bNb

(t,x, a)).

The birth conditions (3.3) become

(3.16) ϑi(t,x, 0) =

∫ ∞

0

βi(a, . . . )ϑi(t,x, a) da, for i = 1, . . . , Nb,

where

(3.17) βi(a, c1, . . . , cNc , ϑ1(t,x, ·), . . . , ϑNb
(t,x, ·))

= β̂i(a, c1, . . . , cNc
, b1(t,x, ·), . . . , bNb

(t,x, ·)).

Substituting Jn
i = ρ∗i ηiu into (3.8) and using (3.9) gives an equation for the change

in total inert volume fraction with dependence on the volume fraction of newly inert
cells (M),

(3.18)
∂N
∂t

= M−∇ · uN .

Integrating (3.13) over age and summing over i gives

(3.19)
∂

∂t

(
Nb∑
i=1

∫ ∞

0

ϑi(t,x, a) da

)
︸ ︷︷ ︸

=∇·(uN )−M

+

(
Nb∑
i=1

∫ ∞

0

∂ϑi(t,x, a)

∂a
da

)
︸ ︷︷ ︸

=−B as defined below

= −∇ ·
(

u

Nb∑
i=1

∫ ∞

0

ϑi(t,x, a) da

)
︸ ︷︷ ︸

=∇·(u(1−N ))

−
(

Nb∑
i=1

∫ ∞

0

μi(a, . . . )ϑi(t,x, a) da

)
︸ ︷︷ ︸

=M

+

(
Nb∑
i=1

∫ ∞

0

fi(ϑ1(t,x, a), . . . , ϑNb
(t,x, a)) da

)
︸ ︷︷ ︸

=F as defined below

.
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Using (3.11) and (3.18), we find that the first term in the first line of (3.19) is
∂t(1−N ) = ∇ · (uN )−M. For the second term in the first line, we assume that ϑi,
for i = 1, . . . , Nb, are sufficiently smooth, and that the corresponding μi are bounded
away from zero for a large, so that each ϑi will eventually decay exponentially to zero
as a → ∞ (see section 7 in [2]). We then obtain for the negative of the second term,
using the age boundary conditions defined by (3.16),

B(t,x) =

Nb∑
i=0

ϑi(t,x, 0)

=

Nb∑
i=0

∫ ∞

0

βi(a, . . . )ϑi(t,x, a) da.(3.20)

For the first term in the second line of (3.19), we again use (3.11) to obtain ∇ ·
(u(1 −N )). Recall that the second to last term of (3.19) is just the volume fraction
of newly inert cells, M(t,x), and set the last term to

(3.21) F(t,x) =

Nb∑
i=0

∫ ∞

0

fi da.

We note that F is not generally identically zero; a similar sum over all phenotypes
of the integrals over all ages of the net changes between phenotypes, f̂ , is conserved
to be zero. However, because the densities relative to volume fractions, ρ∗i , are not
identical, we generally have only F ≡ 0 when ρ∗i = ρ∗ for some constant ρ∗ and for
all i = 1, . . . , Nb. We rewrite (3.19) more compactly as

(3.22) ∇ · u = B(t,x) + F(t,x),

the incompressibility relation for our system.
Substituting u = −λ∇p results in an equation for the pressure, namely

(3.23) −λ∇2p = B(t,x) + F(t,x),

in Bt. Distributing the divergence operator, and again using u = −λ∇p along with
(3.22), gives us ∇ · (uϑi) = −λ∇p · ∇ϑi + ϑi(B +F), so that (3.13) can be rewritten,
for i = 1, . . . , Nb,

(3.24)
∂ϑi

∂t
+

∂ϑi

∂a
− λ∇p · ∇ϑi = −μiϑi + fi − ϑi(B + F).

Similarly, we rewrite (3.18) as

(3.25)
∂N
∂t

= M + λ∇p · ∇N −N (B + F).

We see from (3.23) that p is proportional to λ−1, so that λ∇p is independent of λ.
Consequently, ϑi and N are independent of λ, allowing us to set λ = 1.

We impose periodic and other boundary conditions similar to what was done in [1]
to obtain the complete model, for i = 1, . . . , Nb and j = 1, . . . , Nc,

(3.26a)
∂ϑi

∂t
+

∂ϑi

∂a
−∇p · ∇ϑi = −μiϑi + fi − ϑi(B +F), x ∈ Bt, t > 0, a > 0,
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ϑi(t,x, 0) =

∫ ∞

0

βi(a, . . . )ϑi(t,x, a) da, x ∈ Bt, t > 0,(3.26b)

∂ϑi

∂z
= 0, x ∈ ΓB , t ≥ 0, a > 0,(3.26c)

ϑi(0,x, a) = ϑ0
i (x, a), x ∈ Bt, a ≥ 0,(3.26d)

∂N
∂t

−∇p · ∇N = M−N (B + F), x ∈ Bt, t > 0,(3.26e)

∂N
∂z

= 0, x ∈ ΓB , t ≥ 0,(3.26f)

N (0,x) = N 0(x), x ∈ Bt,(3.26g)

−∇2p = B + F , x ∈ Bt, t ≥ 0,(3.26h)

p = 0, x ∈ Γt, t ≥ 0,(3.26i)

∂p

∂z
= 0, x ∈ ΓB , t ≥ 0,(3.26j)

−Dj∇2cj = rj , x ∈ Ω, t > 0,(3.26k)

rj = 0, x ∈ Ω\Bt,(3.26l)

cj = c∗j , x ∈ ΓHb
, t ≥ 0,(3.26m)

∂cj
∂z

= 0, x ∈ ΓB , t ≥ 0.(3.26n)

The normal velocity of the interface Γt is given by

(3.26o) −∇p · n = − ∂p

∂n
,

where n is the unit outward normal of Γt.
We make particular choices of functions β and μ as follows. To reflect the dimin-

ished new-cell production by senescent cells discussed in [24], we define senescence as
a function of age, σ(a), such that σ(0) = 0 and σ(a) → 1 as a → ∞, and incorporate
σ(a) into β(a, c) and μ(a, c),

β(a, c) = β0(c) (1 − σ(a)) ,(3.27a)

μ(a, c) = μ0(c)σ(a).(3.27b)

We neglect the c dependence of μ0, and choose

σ(a) =
a

a∗ + a
, a ≥ 0,(3.28a)

β0(c) =
ψ c

k + c
,(3.28b)

where a∗ is the senescence age scale, and, following [1], ψ is the maximum growth
rate (with units of inverse age) and k is the Monod saturation constant (with units
of concentration). Oxygen uptake has the form

(3.29) r(c, ϑ(t,x, ·)) =
ξ c

k + c

∫ ∞

0

(1 − σ(a))ϑ(t,x, a) da,

where ξ is the maximum uptake rate.
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3.1. A comment on using physiological structure to represent cell-level
processes. The principal novelties of our model are the use of a so-called physiologi-
cally structured variable to represent cell senescence and to imbed that representation
into a fluid representation of the spatial biofilm. This is philosophically similar to us-
ing age and/or size structure to represent the position of cells within their cell cycle
[6, 26] (or even the distribution of tree sizes across a forest). Using a structured vari-
able in this manner constitutes an upscaling of more complicated processes within
a cell, and results mathematically in a transport term within a partial differential
equation, similar to the general form we use in (3.1) [6, 26].

In the case of cell senescence, the functionally asymmetric division of cells is a
matter of the distribution of high quality versus low quality material between the two
resulting cells [24]. A model of how an individual cell divides into two functionally
dissimilar cells would most likely require a large system of reaction-diffusion equations
for just that cell alone. Although such a representation might shed light on the
interesting phenomena of cell senescence, embedding such a system for every cell in
a biofilm model is unnecessarily complicated and computationally intensive—for a
fully continuous model, all we need is the distribution of the vitality of the cells that
result from functionally asymmetric division. Similarly, one may wish to embed the
dynamics of the protein network that regulates the timing of cell division into a tumor
model, as was done in [16], but such detail is likely unnecessary for large tumors with
very many cells. In such a case, distributions of ages representing positions within the
cell division cycle may be sufficient [6] and the resulting model much more tractable,
clear, and insightful.

If the use of a structure variable to represent cell-level processes is reasonable for
a given problem, then the ability to use age structure, rather than a more compli-
cated physiological trait, would yield a model that is even more tractable, clear, and
insightful. For example, in the bacteria Proteus mirabilis, the size of the multinuclear
filament “swarmer” cells is important in understanding the macroscopic swarm-colony
behavior. However, since swarmer cells grow exponentially, size can be represented as
a function of age [3, 12]. Similarly, in this paper, we ultimately represent senescence
as a function of age, yielding a more tractable and clear model.

4. Nondimensionalization. We simplify in the following to Nb = Nc = 1, i.e.,
restrict to one active phenotype and one substrate, and drop indexing subscripts. Note
now that N = η(t,x) and M =

∫∞
0

μ(a, . . . )ϑ(t,x, a) da. Also note that f = F = 0.
We will continue to assume that β = β(a, c) and μ = μ(a, c).

Let β̄ be a typical value of β(a, c), and let μ̄ be a typical value of μ(a, c). Choosing
a characteristic time scale T = 1/β̄, age scale A = 1/μ̄, and temporarily reintroducing
the friction coefficient λ, we nondimensionalize according to t̃ = t/T , ã = a/A, x̃ =
x/L, and β̃ = βT , μ̃ = μA, c̃ = c/c∗, r̃ = r/r(c∗), p̃ = p(λT/L2), ϑ̃ = ϑA, η̃ = η.
Here L is a (problem-dependent) characteristic system length scale.

Substituting into the system (3.26) and dropping tildes, we obtain

(4.1a)
∂ϑ

∂t
+Λ

∂ϑ

∂a
−∇p·∇ϑ = −Λμϑ−ϑ

∫ ∞

0

β(a, c)ϑ(a) da, x ∈ Bt, t > 0, a > 0,

ϑ(t,x, 0) =

∫ ∞

0

β(a, c)ϑ(t,x, a) da, x ∈ Bt, t > 0,(4.1b)

∂ϑ

∂z
= 0, x ∈ ΓB , t ≥ 0, a > 0,(4.1c)
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ϑ(0,x, a) = ϑ0(x, a), x ∈ Bt, a ≥ 0,(4.1d)

(4.1e)
∂η

∂t
−∇p · ∇η = Λ

∫ ∞

0

μ(a, c)ϑ(a) da− η

∫ ∞

0

β(a, c)ϑ(a) da, x ∈ Bt, t > 0,

∂η

∂z
= 0, x ∈ ΓB , t ≥ 0,(4.1f)

η(0,x) = η0(x), x ∈ Bt,(4.1g)

∇2p = −
∫ ∞

0

β(a, c)ϑ(a) da, x ∈ Bt, t ≥ 0,(4.1h)

p = 0, x ∈ Γt, t ≥ 0,(4.1i)

∂p

∂z
= 0, x ∈ ΓB , t ≥ 0,(4.1j)

∇2c = −Gr, x ∈ Ω, t > 0,(4.1k)

r = 0, x ∈ Ω\Bt,(4.1l)

c = 1, x ∈ ΓHb
, t ≥ 0,(4.1m)

∂c

∂z
= 0, x ∈ ΓB , t ≥ 0.(4.1n)

Here G = L2r(c∗)/(c∗D), and thus 1/
√
G, the active layer depth, is a nondimensional

measure of the depth (scaled by system size) to which substrate can penetrate into
the biofilm before it is consumed. Likewise,

(4.2) Λ =
μ̄

β̄

is a nondimensional ratio of characteristic deactivity time to characteristic reproduc-
tion time.

The nondimensional forms of (3.28a) and (3.28b) are

σ(a) =
a

S + a
, a ≥ 0,(4.3a)

β0(c) =
P c

K + c
,(4.3b)

where S = a∗/A is a comparison of senescence age with system age scale, K = k/c∗ is
a measure of saturation level (large K means substrate-limited behavior and small K
indicates growth-limited behavior), and P = ψ/β̄ is a measure of maximum to typical
yield.

The nondimensional parameter Λ helps us to understand the multiscale nature
of our biofilm model, particularly how the relative speeds of the aging and advective
time scales can change as we descend the biofilm, while remaining fast relative to
the biofilm maturation time. Thus we have two senses of the term “multiscale” in
play in our model: the differences between time scales at the cell and biofilm spatial
scales, and the differences between the time scales of different local processes. The
parameter Λ comes about by scaling time and age separately, an approach that may
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seem counterintuitive to those well versed in the theory of age-structured populations,
given that age and time advance together and are typically measured in the same units.

The magnitude of Λ may depend on location within the biofilm. We identify two
regimes. First, near the top of the biofilm, in particular within the active layer, c
is O(1), and we can then generally expect for a viable biofilm that β̄ will be large
compared to μ̄, i.e., Λ small. In this case, advective terms dominate in (4.1a) and
(4.1e) over the death terms. If advection is unimportant, i.e., ∇p·∇ϑ is small, then the
age scale is determined by the second term of (4.1a), which then requires ∂/∂a ∼ Λ−1.
Such scaling is in fact observed within the biofilm active layer; see section 6.

Second, beneath the active layer, (4.1k) indicates an exponential decay (in space)
of c. Hence, below a sharp transition region from the active layer, we can expect
β̄ to be small compared to μ̄, i.e., Λ large. In this case, at first glance (4.1a) in-
dicates ϑ has a μ-governed decaying age structure. There is a subtlety here, how-
ever. Large Λ in (4.1a) suggests an approximately exponential age profile of the form
ϑ(a) = ϑ(0) exp(−μa). But such a form is inconsistent with (4.1b), which does not
allow dependence on μ, unless ϑ(0) = 0. In other words, for large Λ the birth term
is insufficient to introduce enough new cells to overcome death, and so an active
population is not viable. Having said this, however, we will observe a μ-determined
exponential age structure develop in the deeper parts of the biofilm; see section 6.
The reason for this is that in the lower layer of the biofilm, where the population is
barely viable, the birth rate has decreased to the point that it is only just balancing
death. Hence condition (4.1b), which requires that an exponential age structure be
controlled by β, also implies that exponential age structure is determined by μ.

5. Spatially homogeneous steady-state age distributions. We assume spa-
tial homogeneity and temporal stationarity, i.e., ϑ = ϑ(a), η = η(a), on −∞ < z < ∞.
(We note that pressure gradients within the biofilm and hence advection are generally
weak within inactive regions.) Then ϑ, η satisfy

dϑ

da
= −(μ + ϑ0)ϑ,(5.1)

ϑ0 =

∫ ∞

0

βϑ da,(5.2)

η = 1 −
∫ ∞

0

ϑ(a) da,

where ϑ0 = ϑ(0). This system is unphysical in that it requires unbounded velocities
(the pressure gradient takes the form pz = C1z+C2) to enforce incompressibility, but
it is, nevertheless, useful for illustrative purposes.

The solution to (5.1) is

(5.3) ϑ(a) = ϑ0e
−

∫ a
0

μ da′
e−ϑ0a.

Thus (5.2) implies the condition

(5.4) ϑ0 =

∫ ∞

0

βϑ0e
−

∫ a
0

μ da′
e−ϑ0a da.

In order to have a nontrivial solution, we require ϑ0 to satisfy

(5.5) 1 =

∫ ∞

0

βe−
∫ a
0

μ da′
e−ϑ0a da,
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if possible. If this is not possible, then ϑ0 = ϑ(a) = 0 is the only solution.
The choice of μ and β independent of a allows a particular transparence. In this

case, condition (5.5) becomes

(5.6) 1 =

∫ ∞

0

βe−(μ+ϑ0)a da,

which has a solution with ϑ0 > 0 if

(5.7)

∫ ∞

0

βe−μa da > 1,

i.e., if new cells can be produced sufficiently fast to replace aging (and dying) ones.
Note that this condition cannot be satisfied for μ sufficiently large or β sufficiently
small (in which case ϑ0 = 0 necessarily). Now, if we write ϑ0 = ϑ̂0 −μ, then ϑ̂0 solves

(5.8) 1 =

∫ ∞

0

βe−ϑ̂0a da,

that is, ϑ̂0 = β. Equation (5.3) becomes

(5.9) ϑ(a) = (β − μ)e−βa.

Fecundity β fixes the profile of the age structure, although age distribution amplitude
depends on both β and μ. Large β results in a steep age profile with amplitude
almost independent of μ. Small β results in a flat age profile. However, we note
that the viability boundary (in parameter space) occurs at β = μ. For marginally
viable populations, β = μ + ε, and hence the population age profile is exponential
with decay rate approximately μ. Note that μ gives the slowest possible rate of decay.
With regards to a biofilm model, if we assume that β decreases with decreasing c,
then age structure should flatten deeper down into the biofilm. In fact, we expect an
abrupt transition from steep to flat profile as we pass through the active layer.

Returning to our specified forms of β(a, c) and μ(a, c), we have

ϑ(a) = ϑ(0)

(
S

a + S

)−μ0(1)S

e−μ0(1)ae−ϑ(0)a/Λ,(5.10a)

η = Λ
μ0(1)

ϑ(0)

∫ ∞

0

a

a + S
ϑ(a) da.(5.10b)

Going back for a moment to dimensional variables, we use days as units of time, take
μ0 = 0.25, and vary β0(c) to induce changes in a characteristic reproduction rate,

β̄ =
∫ a∗

0
β(a, c) da. We set a∗ = 0.5, which accounts for a loss of 1% vitality per

division (occurs on average every 0.02 days for Escherichia coli). Figure 2 shows the
response of the steady-state solutions to changes in β̄. We note that the steady-state
active-cell distribution is zero when β̄ is less than roughly 0.33.

6. Computational results. In this section, we present computational results
for one spatial dimension (height of the biofilm), and explicit age structure represent-
ing cell senescence, for the dimensional system (3.26). The height of the biofilm, Γt, is
regulated using an erosion term at the biofilm/substrate interface (a standard device
in biofilm models; see, e.g., [15]) given by

(6.1)
∂Γt

∂t
= −∂p

∂z

∣∣∣∣
z=Γt

− αΓ2
t ,



BIOFILM AS A SENESCENCE-STRUCTURED FLUID 359

624−22

−20

18

−18

−16

−16

−14

−14

2

−12

−12

10

−10

−10

−8

−8

−8

−6

−6

−6

4

−4

−4

−4

−4 −4 −4

−2

−2

−2−2

0

0

age (days)

C
ha

ra
ct

er
is

tic
 β

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

(a) Response of ln(θ(a)) to changes in β̄.

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Characteristic β

η

(b) Response of η to
changes in β̄.

Fig. 2. Response of steady-state solutions to changes in the characteristic reproduction rate,

β̄ =
∫ a∗

0 β(a, c) da.

where α is the erosion coefficient.

For the computations presented in this section, we consider again the case of
Nb = Nc = 1. We take as the initial condition a biofilm with a height of Γt(0) = 50μm
and with an age distribution that is initially the same for all heights, ϑ(0, z, a) =
0.35∗max(1− a

4 , 0) for 0 ≤ z ≤ 50μm. This piecewise linear function, when converted
from age structure to senescence structure (recall σ(a) = a

a∗+a ),3 closely approximates
the senescence structure at the top of the biofilm when it is near steady state and
thus represents a situation where a new area is being colonized by material from the
top of a mature biofilm when it is near steady state. The motivation is that a young
biofilm may be formed by colonization of cells detached from the upper region of an
upstream, mature biofilm.

We use a time unit equal to one day. As a result, we take the senescence time
scale to be a∗ = 0.5, as was done in section 5. We use the division time for Escherichia
coli, which is roughly every 30 minutes.

We set the erosion parameter to be α = 0.03, the distance between Γt and ΓHb
to

be Hb = 37.5μm, and the parameters for the various functional forms to be μ0 = 0.25,
k = 0.05, ψ = 2, ξ = 3, and c∗ = 1. These parameter values are of the same order of
magnitude of those used in [1], with modifications due to the inclusion of age structure
in the model equations.

Results of the computations with the above parameters are displayed in Figure 3.
The height of the colored area indicates the height of the biofilm, including both
active and inert bacteria. Color represents cell state: black designates inert cells, and
a spectrum from off-white to yellow to orange to red designates senescence of a cell
of a given age, σ(a). The horizontal width occupied by a color indicates the volume
fraction of cells of the corresponding senescence.

3Computations with different σ(a), namely σ(a) = 1 − exp(−a/a∗), σ(a) = max( a
4a∗ , 0.999),

σ(a) = max( a
a∗ , 0.999), and σ(a) = a2

a∗+a2 , with the same parameters as in this section, except for

ψ, give qualitatively similar results. We need to change ψ since the different areas under the curves
of σ(a) give substantially different total new cell production.
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Fig. 3. Biofilm dynamics from initial colonization to steady state. The height of the colored
area represents the height of the biofilm, including both active and inert bacteria. Color represents
cell state: black represents inert cells, and a spectrum from off-white to yellow to orange to red
represents senescence of a cell of a given age, σ(a). The horizontal width of a color constitutes the
volume fraction of cells of the corresponding senescence.

The biofilm tends to a steady state, as discussed in section 5, consisting of an
active layer at the top and a passive layer appearing as a stalk. It is already understood
that this physical structure provides a form of protection for the bacteria population as
a whole [9]. The question that remains is, How does senescence and the corresponding
resistance to antimicrobial challenge fit into the overall defensive strategy of bacteria?

To obtain an answer, we first consider the normalized age distributions, ignoring
the inert-cell populations, one-third of the way from the bottom (z = 1.118, i.e., in
the “stalk”), two-thirds of the way from the bottom (z = 2.2361, i.e., in the transition
region between the active and passive layers), and at the top of the biofilm (z = 3.3541,
i.e., well within the active layer) at time t = 25 days. These distributions are shown
in Figure 4.

As we descend the biofilm down through the active layer and into the passive
layer, we expect Λ to increase so that (4.1a) approaches, in steady state, (5.10a). The
plot of ϑ(a) = 0.01 exp(−a/4)(1+2a)1/4 highlights the convergence toward the shape
of the curve of the large Λ limit of (5.10a). The coefficient of 0.01 governing the
magnitude of the curve is chosen for ease of comparison. At the top of the biofilm at
steady state, the oxygen concentration is approximately c = 0.5581. Using this value,
our specific functional forms defined in (3.27)–(3.28), and (5.3) and (5.5), we obtain
a value of ϑ0 = 0.6221. We renormalize the age distribution to total one so that
(5.3) has the specific form ϑ(a) ≈ 0.7676 exp(−0.7471 a)(1 + 2a)1/8. This represents
the situation when there is no advection. Differences between this function and the
graph of the computed steady-state age distribution at the top of the biofilm reflect
the role of advection, including the upward flow of material with a relatively higher
proportion of inert and senescent cells.
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from the bottom, two-thirds of the way from the bottom, and at the top of the biofilm at time
t = 25 days. The plot of ϑ(a) = 0.01 exp(−a/4)(1 + 2a)1/4 is the large Λ limit of (5.10a). The
coefficient of 0.01 governing the magnitude of the curve is chosen for ease of comparison. The
plot of ϑ(a) = 0.7676 exp(−0.7471 a)(1 + 2a)1/8 is the renormalized steady state, given an oxygen
concentration of c = 0.5581, in the absence of advection. Differences between this curve and the
computed solution at the top of the biofilm illustrate the role of advection, including the upward flow
of a relatively greater proportion of inert and senescent cells.

We find the expected result, as discussed in sections 4 and 5, that the age distri-
butions broaden as we go from the active to the passive layers within the biofilm. In
the inactive region, the profile matches that of an approximately growth-death bal-
anced population. This is to be expected in an erosion maintained steady state—some
growth must occur all the way to the bottom of the biofilm. A nonviable zone does
not form in the presence of erosion because such a zone does not result in any growth
induced pressure and hence does not increase expansive velocity. We remark that it
is possible that μ-dominated age structure in the inactive region of the biofilm is thus
a by-product of erosion. A more general (and realistic) biofilm model would allow for
the possibility of mechanical detachment; this would require a much more elaborate
setup than the one used here (i.e., mechanical stress coupling in three dimensions).
It is still plausible that a nonviable zone would lead to detachment, and so we posit
that age structure would not change.

Finally, we extend the computation to include the effects of antimicrobial chal-
lenge. We assume the antimicrobial agent has a source at the bulk-substrate interface
ΓHb

, that it diffuses on a fast time scale compared to growth, and, for simplicity,
that it is not degraded by the biofilm. Consequently, the antimicrobial saturates the
biofilm essentially instantaneously, and thus we can model the effects of antimicro-
bial challenge by modifying the death modulus μ rather than adding an additional
chemical species equation to our system:

(6.2) μ(t, a, c) = μ0σ(a) + μ1(t, c)(1 − σ(a)).
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Fig. 5. Response to an antimicrobial agent applied from time t = 35 to time t = 35.2. The
height of the colored area represents the height of the biofilm, including both active and inert bacteria.
Color represents cell state: black represents inert cells, and a spectrum from off-white to yellow to
orange to red represents senescence of a cell of a given age, σ(a). The horizontal width of a color
constitutes the volume fraction of cells of the corresponding senescence.

This form assumes that older cells are more resistant to antimicrobial challenge than
younger cells, and that the antimicrobial agent affects metabolically active cells more
than less active cells, represented by the oxygen dependence of μ1. In particular, we
take

(6.3) μ1(t, c) =

{
50c
k+c , 35 ≤ t ≤ 35.2,

0 otherwise.

Results are shown in Figure 5 for the case when an antimicrobial agent is applied
from time t = 35 to time t = 35.2. The senescence structure of the population in
the stalk allows it to maintain itself even after the active layer is largely decimated.
Moreover, upon removal of the antimicrobial agent, the population of older cells in
the active layer is quickly replaced by younger cells, which then return the biofilm to
its steady state over a longer maturation time. Note that the height continues to drop
after removal of the antimicrobial agent prior to regrowth since it takes time for the
pressure to increase to a level where it can balance the erosion term and reestablish
the steady state.

6.1. Numerical methods. We employ a moving-grid Galerkin method in age,
using piecewise constants as the approximation space [2]. The use of higher-order
approximation spaces in age was discussed in [4]. The moving-grid Galerkin method
decouples the age and time discretizations, while allowing age and time to advance
together along characteristic lines. Consequently, we are able to solve the model equa-
tions in age without numerical dispersal or oscillations. Because the transport in age
is computed by the movement of the grid, rather than by a difference approximation
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of the age derivative or through jump terms in a standard discontinuous Galerkin
method, the only meaningful source of error is approximation error, which underlies
the superconvergence results in [2, 4]. For the case of piecewise constant functions,
we obtain a second-order correct method in age.

We integrate time using a step-doubling method [5]. Step doubling consists of
taking one step of backward Euler over a time step and then taking two half steps of
backward Euler over the same time interval. This results in two things. First, we can
compare the two late-time solutions for the error control needed for the adaptivity
in time. Second, we can extrapolate the two solutions to get a likely second-order
accurate solution in time.

For the spatial variable, we discretize, over a uniform partition, the domain [0,Γt]
and compute the changes in biofilm height by solving (6.1). We impose a boundary
condition on c at Γt by using a ghost node positioned at ΓHb

. Fluxes are computed
using upwind differencing [19]. Although this method is only first-order correct, it has
been sufficient for the computations presented in this paper, given the lack of sharp
fronts in the interior of the biofilm, [0,Γt]. More advanced methods will be needed
for computations with more spatial dimensions.

The discretizations in the computational results presented above used a uniform
partition of the spatial interval [0,Γt] with 301 nodes, and a uniform age discretization
of the truncated age domain, [0, 16], with Δa = 1/8 and piecewise constant basis
functions. A uniform age discretization in the context of the moving-grid Galerkin
method means that all but the first and last age intervals are constant in length and
that a new age interval is introduced at the birth boundary when the old birth interval
reaches Δa in length. The tolerance parameter for the adaptive time stepping in the
step-doubling algorithm was 5 × 10−3.

7. Conclusions. In this paper, we presented a multiscale model and simulation
of biofilm development that is interesting for three major reasons. One is the nonstan-
dard multiscale nature of the problem: cell division and aging is a result of complex,
and fast, micro- and nanoscale processes, at least when compared to the advective
scale of the biofilm growth. However, by representing the cell division and aging
process using notions of senescence and age, we have a mechanism for the cellular
scale that, in keeping with what has been observed in other age- and space-structured
multiscale systems [3, 6, 12, 13], is in general slower than the advective process. But
even here we see novelty; unlike [3, 6, 12, 13], the relative ranking of the time scales
of the aging and advective processes inverts as we move from an active layer at the
top of the biofilm to a passive layer below. Further, both of these times scales are
fast with respect to the biofilm maturation time.

This inversion of the time scales underlies another major point of interest: the
implication that the active layer does not merely provide a physical shield for a reser-
voir of cells in the passive layer but also induces the passive layer to consist of an
increased proportion of senescent persister cells.

A third point of interest, and one which may have relevance to other biological
systems that exist in a polymer matrix, e.g., tumor-matrix interactions, is the novel
inclusion of age structure in a spatial model where movement is due to growth-driven
expansive stress rather than diffusion or diffusion-like terms that represent mecha-
nisms such as chemotaxis or haptotaxis (movement of cells up a matrix gradient).

The model in this paper has a number of entailments for future work. One is
experimental verification of the hypothesis that passive layers in biofilm contain a
disproportionate number of persister cells. Another is a generalization of the model
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to higher spatial dimensions and a study to see in what manner the physical stalk of
the mushroom-like shapes biofilm often form affects the persister “stalk” visualized in
the senescence structure in this paper. Finally, it is likely that many of the modeling
and simulation ideas developed in this paper have relevance to other systems. For
example, inclusion of growth-driven expansive stress into an age- and space-structured
tumor model like that in [6], alongside other major mechanisms of motion such as
diffusion and haptotaxis, would result in models with more fidelity to the physical
mechanisms of tumor invasion.
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