
SOLVING LINEAR SYSTEMS

Linear systems Ax = b occur widely in applied math-

ematics. They occur as direct formulations of “real

world” problems; but more often, they occur as a part

of the numerical analysis of some other problem. As

examples of the latter, we have the numerical solution

of systems of nonlinear equations, ordinary and par-

tial differential equations, integral equations, and the

solution of optimization problems.

There are many ways of classifying linear systems.

Size: Small, moderate and large. This of course varies

with the machine you are using. Most PCs are now

being sold with a memory of 64 to 128 megabytes

(MB), my own HP workstation has 768 MB, and the

Weeg computer center’s SGI shared memory parallel

computer has a memory of 2 gigabytes (GB).



For a matrix A of order n × n, it will take 8n2 bytes

to store it in double precision. Thus a matrix of order

4000 will need around 128 MB of storage. The latter

would be too large for most present day PCs, if the

matrix was to be stored in the computer’s memory.

Sparse vs. Dense. Many linear systems have a matrix

A in which almost all the elements are zero. These

matrices are said to be sparse. For example, it is quite

common to work with tridiagonal matrices

A =




a1 c1 0 · · · 0
b2 a2 c2 0 ...
0 b3 a3 c3
... . . .
0 · · · bn an




in which the order is 104 or much more. For such

matrices, it does not make sense to store the zero ele-

ments; and the sparsity should be taken into account

when solving the linear system Ax = b. Also, the

sparsity need not be as regular as in this example.



Special properties: Often the matrix will have some

other special properties. For example, A might be

symmetric, tridiagonal, banded,

ai,j = 0 for |i − j| > p

or positive definite,

(Ax, x) > 0 for all x ∈ C
n, x �= 0

All of these properties can be used to develop more

efficient and accurate methods for solving Ax = b.



METHODS OF SOLUTION

There are two general categories of numerical methods

for solving Ax = b.

Direct Methods: These are methods with a finite num-

ber of steps; and they end with the exact solution x,

provided that all arithmetic operations are exact. The

most used of these methods is Gaussian elimination,

which we will begin with. There are other direct meth-

ods, and we will study them later in connection with

solving the matrix eigenvalue problem.

Iteration Methods: These are used in solving all types

of linear systems, but they are most commonly used

with large sparse systems, especially those produced

by discretizing partial differential equations. This is

an extremely active area of research.



SOLVING LINEAR SYSTEMS

We want to solve the linear system Ax = b:



a1,1 · · · a1,n
... . . . ...

an,1 · · · an,n







x1
...

xn


 =




b1
...

bn




This will be done by the method used in beginning

algebra, by successively eliminating unknowns from

equations, until eventually we have only one equation

in one unknown. This process is known as Gaussian

elimination. To help us keep track of the steps of this

process, we will denote the initial system by

A(1)x = b(1):


a
(1)
1,1 · · · a

(1)
1,n

... . . . ...

a
(1)
n,1 · · · a

(1)
n,n







x1
...

xn


 =




b
(1)
1...

b
(1)
n




Initially we will make the assumption that every pivot

element will be nonzero; and later we remove this

assumption.



Step 1. We will eliminate x1 from equations 2 thru

n. Begin by defining the multipliers

mi,1 =
a
(1)
i,1

a
(1)
1,1

, i = 2, ..., n

Here we are assuming the pivot element a
(1)
1,1 �= 0.

Then in succession, multiply mi,1 times row 1 (called

the pivot row) and subtract the result from row i.

This yields new matrix elements

a
(2)
i,j = a

(1)
i,j − mi,1a

(1)
1,j , j = 2, ..., n

b
(2)
i = b

(1)
i − mi,1b

(1)
1

for i = 2, ..., n.

Note that the index j does not include j = 1. The

reason is that with the definition of the multiplier mi,1,

it is automatic that

a
(2)
i,1 = a

(1)
i,1 − mi,1a

(1)
1,1 = 0, i = 2, ..., n



The linear system is now denoted by A(2)x = b(2):



a
(1)
1,1 a

(1)
1,2 · · · a

(1)
1,n

0 a
(2)
2,2 a

(2)
2,n

... ... . . . ...

0 a
(2)
n,2 · · · a

(2)
n,n







x1
x2
...

xn


 =




b
(1)
1

b
(2)
2...

b
(2)
n




Step k: Assume that for i = 1, ..., k − 1 the unknown

xi has been eliminated from equations i + 1 thru n.

We have the system A(k)x = b(k)




a
(1)
1,1 a

(1)
1,2 · · · a

(1)
1,n

0 a
(2)
2,2 · · · a

(2)
2,n

. . . . . . ...
... 0 a

(k)
k,k · · · a

(k)
k,n

... ... . . . ...

0 · · · 0 a
(k)
n,k · · · a

(k)
n,n







x1
x2

...

xn




=




b
(1)
1

b
(2)
2...

b
(k)
k...

b
(k)
n




We want to eliminate unknown xk from equations

k + 1 thru n.



Begin by defining the multipliers

mi,k =
a
(k)
i,k

a
(k)
k,k

, i = k + 1, ..., n

The pivot element is a
(k)
k,k, and we assume it is nonzero.

Using these, we eliminate xk from equations k + 1

thru n. Multiply mi,k times row k (the pivot row)

and subtract from row i, for i = k + 1 thru n.

a
(k+1)
i,j = a

(k)
i,j − mi,ka

(k)
k,j , j = k + 1, ..., n

b
(k+1)
i = b

(k)
i − mi,kb

(k)
k

for i = k + 1, ..., n. This yields the linear system

A(k)x = b(k):






a
(1)
1,1 · · · a

(1)
1,n

0 . . . ...

a
(k)
k,k a

(k)
k,k+1 · · · a

(k)
k,n

... 0 a
(k+1)
k+1,k+1 a

(k+1)
k+1,n

... ... . . . ...

0 · · · 0 a
(k+1)
n,k+1 · · · a

(k+1)
n,n







x1
...

xk
xk+1

...
xn




=




b
(1)
1...

b
(k)
k

b
(k+1)
k+1

...

b
(k+1)
n




Doing this for k = 1, 2, ..., n leads to an upper trian-

gular system of linear equations A(n)x = b(n):



a
(1)
1,1 · · · a

(1)
1,n

0 . . . ...
... . . .

0 · · · 0 a
(n)
n,n







x1
...
...

xn


 =




b
(1)
1...
...

b
(n)
n






At each step, we have assumed for the pivot element

that

a
(k)
k,k �= 0

Later we remove this assumption. For now, we con-

sider the solution of the upper triangular system

A(n)x = b(n).

To avoid the superscripts, and to emphasize we are

now solving an upper triangular system, denote this

system by

Ux = g




u1,1 · · · u1,n
0 . . . ...
... . . .
0 · · · 0 un,n







x1
...
...

xn


 =




g1
...
...

gn




This is the linear system

u1,1x1 + u1,2x2 + · · · + u1,n−1xn−1 + u1,nxn = g1
...

un−1,n−1xn−1 + un−1,nxn = gn−1
un,nxn = gn



u1,1x1 + u1,2x2 + · · · + u1,n−1xn−1 + u1,nxn = g1
...

un−1,n−1xn−1 + un−1,nxn = gn−1
un,nxn = gn

We solve for xn, then xn−1, and backwards to x1.

This process is called back substitution.

xn =
gn

un,n

uk =
gk −

{
uk,k+1xk+1 + · · · + uk,nxn

}

uk,k

for k = n − 1, ..., 1.

Examples of the process of producing A(n)x = b(n)

and of solving Ux = g are given in the text. They

are simply a more carefully defined and methodical

version of what you have done in high school algebra.



QUESTIONS

• How do we remove the assumption on the pivot

elements?

• How many operations are involved in this proce-

dure?

• How much error is there in the computed solution

due to rounding errors in the calculations?

• Later (if there is time), how does the machine

architecture affect the implementation of this al-

gorithm.

Before doing this, we consider a result on factoring

matrices that is associated with Gaussian elimination.



THE LU FACTORIZATION

Using the multipliers from Gaussian elimination, de-

fine the lower triangular matrix

L =




1 0 0 · · · 0
m2,1 1 0
m3,1 m3,2 1 ...

... . . .
mn,1 mn,2 · · · mn,n−1 1




Recall the upper triangular matrix U = A(n). Then

A = LU

This is called the LU-factorization of the matrix A.



Proof. The proof is obtained by looking at the (i, j)

element of LU ,

(LU)i,j =
[
mi,1, ..., mi,i−1, 1, 0, ..., 0

]




u1,j
...

uj,j
0
...
0




We consider separately the cases of i ≤ j and i > j.

With the first case, we have more nonzero elements

in the column U∗,j than in the row Li,∗. Thus

(LU)i,j = mi,1u1,j + · · · + mi,i−1ui−1,j + ui,j

The elements ui,j are given by

ui,j = a
(i)
i,j , j = i, ..., n, i = 1, ..., n



Recall that

a
(2)
i,j = a

(1)
i,j − mi,1a

(1)
1,j , j = 2, ..., n

for i = 2, ..., n. Then

mi,1u1,j = mi,1a
(1)
1,j = a

(1)
i,j − a

(2)
i,j

Similarly,

mi,2u2,j = mi,2a
(2)
2,j = a

(2)
i,j − a

(3)
i,j

...

mi,i−1ui−1,j = mi,i−1a
(i−1)
i−1,j = a

(i−1)
i,j − a

(i)
i,j

Combining these results,

(LU)i,j = mi,1u1,j + · · · + mi,i−1ui−1,j + ui,j

=
(
a
(1)
i,j − a

(2)
i,j

)
+

(
a
(2)
i,j − a

(3)
i,j

)

+ · · · +
(
a
(i−1)
i,j − a

(i)
i,j

)
+ a

(i)
i,j

= a
(1)
i,j = ai,j

The second case, in which i > j, is given in the text.



EXAMPLE

In the text, we consider the linear system



1 2 1
2 2 3

−1 −3 0







x1
x2
x3


 =




0
3
2




Gaussian elimination leads to




1 2 1
0 −2 1

0 0 1
2







x1
x2
x3


 =




0
3
1
2




with multipliers

m2,1 = 2, m3,1 = −1, m3,2 =
1

2

Then


1 0 0
2 1 0

−1 1
2 1







1 2 1
0 −2 1

0 0 1
2


 =




1 2 1
2 2 3

−1 −3 0






In Matlab, you can find the LU factorization of a ma-

trix using the function lu. For example,

[L U P ] = lu(A)

yields a lower triangular matrix L, an upper triangular

matrix U , and a permuation matrix P , for which

LU = PA

The reason for this arises in a modification of Gaus-

sian elimination, one which eliminates our assumption

regarding the pivot elements being nonzero and simul-

taneously improves the error behaviour of Gaussian

elimination.



AN OPERATIONS COUNT

How many operations are expended in solving Ax =

b using Gaussian elimination? To calculate this, we

must return to the formal definitions, of both A(k)x =

b(k) and the solution of Ux = g.

Step 1. Multipliers: n − 1 divisions.

A(1) → A(2): (n − 1)2 additions and multiplications.

[Note that we consider additions and subtractions as

the same type of operation.]

b(1) → b(2): n − 1 additions and multiplications.

Step 2. Multipliers: n − 2 divisions.

A(2) → A(3): (n − 2)2 additions and multiplications.

b(2) → b(3): n − 2 additions and multiplications.



Step n − 1. Multipliers: 1 division.

A(n) → A(n−1): 1 addition and multiplication.

b(n−1) → b(n): 1 addition and multiplication.

Thus we have the following totals for the transforma-

tion of A to U = A(n).

Divisions. (n − 1) + (n − 2) + · · · + 1

Additions. (n − 1)2 + (n − 2)2 + · · · + 1

Multiplications. (n − 1)2 + (n − 2)2 + · · · + 1

To add these up, we need the following general for-

mulas.

p∑
j=1

j =
p(p + 1)

2

p∑
j=1

j2 =
p(p + 1)(2p + 1)

6

These can proven using mathematical induction.



With these, the number of operations for A → U are

as follows.

Divisions
n(n − 1)

2

Additions
n(n − 1)(2n − 1)

6

Multiplications
n(n − 1)(2n − 1)

6

Similarly, we can calulate the cost of b(1) → b(n) as

Additions
n(n − 1)

2

Multiplications
n(n − 1)

2

The cost of solving Ux = g is

Divisions n

Additions
n(n − 1)

2

Multiplications
n(n − 1)

2



On some machines, the cost of a division is much more

than that of a multiplication; whereas on others there

is not any important difference.

For this last case, we usually combine the additions

and subtractions to obtain the following costs.

MD(A → U) =
n

(
n2 − 1

)

3

MD(b(1) → g) =
n(n − 1)

2

MD(Find x) =
n(n + 1)

2

For additions and subtractions, we have

AS(A → U) =
n(n − 1)(2n − 1)

6

AS(b(1) → g) =
n(n − 1)

2

AS(Find x) =
n(n − 1)

2



Summarizing, the cost of factoring the matrix A into

L and U involves approximately 1
3n3 multiplications

and divisions, and approximately 1
3n3 additions and

subtractions. The total number of arithmetic opera-

tions is approximately

2

3
n3

Thus as the size of a linear system is doubled, the cost

of factoring the matrix increases by a factor of about

8.

Once the matrix has been factored, the cost of mod-

ifying the right side b to g, and of then solving for x,

is

MD(b → x) = n2

AS(b → x) = n(n − 1)
.
= n2

Thus the principal cost is the solution of a linear sys-

tem Ax = b is in the factorization of the matrix A

into LU ; and the subsequent solving for x is much

smaller if n is a moderately large number.



We often wish to solve linear systems Ax = b with

varying vectors b, and A unchanged. For such cases,

it is important to keep the information used in pro-

ducing L and U , as this this is the costly portion of

the solution process.

In the machine, store the elements ui,j and mi,j into

the portions of A with the same subscripts. This

can be done, as those positions are no longer being

changed; and for the portion below the diagonal, those

elements are being set to zero in A.

To solve m systems

Ax(�) = b(�), � = 1, ..., m

for m different right hand vectors b(�), the operations

cost will be

MD =
n

(
n2 − 1

)

3
+ mn2 .

= 1
3n3 + mn2

AS =
n(n − 1)(2n − 1)

2
+ mn(n − 1)

.
= 1

3n3 + mn2



CALCULATING AN INVERSE

To find the inverse of a matrix A amounts to solving

the equation

AX = I

In partioned form,

A[X∗,1, ..., X∗,n] =
[
e(1), ..., e(n)

]

which yields the n equivalent linear systems

AX∗,k = e(k), k = 1, ..., n

Thus the cost of calculating the inverse X = A−1 is

approximately

2

3
n3 + 2n3 =

8

3
n3

This is only around 4 times the cost of solving a single

system Ax = b.


