## BOUNDARY VALUE PROBLEMS

The basic theory of boundary value problems for ODE is more subtle than for initial value problems, and we can give only a few highlights of it here. For notational simplicity, abbreviate boundary value problem by $B V P$.

We begin with the two-point BVP

$$
\begin{gathered}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), \quad a<x<b \\
A\left[\begin{array}{c}
y(a) \\
y^{\prime}(a)
\end{array}\right]+B\left[\begin{array}{c}
y(b) \\
y^{\prime}(b)
\end{array}\right]=\left[\begin{array}{l}
\gamma_{1} \\
\gamma_{2}
\end{array}\right]
\end{gathered}
$$

with $A$ and $B$ square matrices of order 2 . These matrices $A$ and $B$ are given, along with the right-hand boundary values $\gamma_{1}$ and $\gamma_{2}$. The problem may not be solvable (or uniquely solvable) in all cases, and we illustrate this with some examples (also given in the text).

## EXAMPLE \#1:

$$
\begin{gather*}
y^{\prime \prime}=-\lambda y, \quad 0<x<1 \\
y(0)=y(1)=0 \tag{1}
\end{gather*}
$$

The differential equation

$$
y^{\prime \prime}+\lambda y=0
$$

has the general solution
$Y(x)= \begin{cases}c_{1} e^{\mu x}+c_{2} e^{-\mu x}, & \lambda<0, \mu=(-\lambda)^{\frac{1}{2}} \\ c_{1}+c_{2} x, & \lambda=0 \\ c_{1} \cos (\mu x)+c_{2} \sin (\mu x) & \lambda>0, \mu=(\lambda)^{\frac{1}{2}}\end{cases}$
In the first two cases, if we apply the boundary conditions, we find they imply $c_{1}, c_{2}=0$. For the third case, we obtain the conditions

$$
c_{1}=0, \quad c_{2} \sin (\mu)=0
$$

The condition $\sin (\mu)=0$ is equivalent to

$$
\begin{align*}
\mu & = \pm \pi, \pm 2 \pi, \pm 3 \pi, \cdots \\
\lambda & =\pi^{2}, 4 \pi^{2}, 9 \pi^{2}, \cdots \tag{2}
\end{align*}
$$

This yields a nonzero solution for (1) of

$$
Y(x)=c \sin (\mu x)
$$

for any real number $c \neq 0$. If $\lambda$ is not from the list in (2), then the only possible solution of $(1)$ is $Y(x) \equiv 0$.

EXAMPLE \#2:

$$
\begin{gather*}
y^{\prime \prime}=-\lambda y+g(x), \quad 0<x<1  \tag{3}\\
y(0)=y(1)=0
\end{gather*}
$$

If $\lambda$ is not chosen from (2), then we can solve this boundary value problem as an integral formula known as Green's formula:

$$
\begin{gather*}
Y(x)=\int_{0}^{1} G(x, t) g(t) d t, \quad 0 \leq x \leq 1  \tag{4}\\
G(x, t)= \begin{cases}G_{0} \equiv-\frac{\sin (\mu t) \sin \mu(1-x)}{\mu \sin \mu}, & x \geq t \\
G_{1} \equiv-\frac{\sin (\mu x) \sin \mu(1-t)}{\mu \sin \mu}, & x \leq t\end{cases}
\end{gather*}
$$

With these,

$$
\begin{gathered}
G(0, t)=G(1, t) \equiv 0 \\
G_{0}(x, x)=G_{1}(x, x) \\
\frac{\partial G_{0}(x, x)}{\partial x}-\frac{\partial G_{1}(x, x)}{\partial x}=1
\end{gathered}
$$

and with these properties, we can show formula (4) satisfies (3). To show this is the only solution, suppose there is a second solution $Z(x)$. Then subtract the two equations

$$
\begin{aligned}
& Y^{\prime \prime}=-\lambda Y+g(x) \\
& Z^{\prime \prime}=-\lambda Z+g(x)
\end{aligned}
$$

to get

$$
E^{\prime \prime}=-\lambda E, \quad E(0)=E(1)=0
$$

with $E=Y-Z$. Then example $\# 1$ implies $E(x) \equiv 0$.

If $\lambda$ is chosen from (2), however, then (3) will not, in general, have a solution. To illustrate the possibilities, let $\lambda=\pi^{2}$. Then (3) has a solution if and only if

$$
\int_{0}^{1} g(x) \sin (\pi x) d x=0
$$

In this case, the general solution of (3) is given by

$$
Y(x)=c \sin (\pi x)+\frac{1}{\pi} \int_{0}^{1} g(t) \sin (\pi(x-t)) d t
$$

where $c$ is arbitrary.

## THEOREM

## Consider the two-point BVP

$$
\begin{gather*}
y^{\prime \prime}=p(x) y^{\prime}+q(x) y+g(x), \quad a<x<b \\
A\left[\begin{array}{c}
y(a) \\
y^{\prime}(a)
\end{array}\right]+B\left[\begin{array}{c}
y(b) \\
y^{\prime}(b)
\end{array}\right]=\left[\begin{array}{l}
\gamma_{1} \\
\gamma_{2}
\end{array}\right] \tag{5}
\end{gather*}
$$

The homogeneous form of this problem is given by

$$
\begin{align*}
& y^{\prime \prime}=p(x) y^{\prime}+q(x) y, \quad a<x<b \\
& A\left[\begin{array}{c}
y(a) \\
y^{\prime}(a)
\end{array}\right]+B\left[\begin{array}{c}
y(b) \\
y^{\prime}(b)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \tag{6}
\end{align*}
$$

Theorem The nonhomogeneous problem (5) has a unique solution $Y(x)$ on $[a, b]$, for each set of given data $\left\{g(x), \gamma_{1}, \gamma_{2}\right\}$, if and only if the homogeneous problem (6) has only the trivial solution $Y(x) \equiv 0$.

The proof uses the theory of integral equations of Fredholm type; and of necessity, it is omitted here.

For the general BVP

$$
\begin{gathered}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), \quad a<x<b \\
A\left[\begin{array}{c}
y(a) \\
y^{\prime}(a)
\end{array}\right]+B\left[\begin{array}{c}
y(b) \\
y^{\prime}(b)
\end{array}\right]=\left[\begin{array}{c}
\gamma_{1} \\
\gamma_{2}
\end{array}\right]
\end{gathered}
$$

an existence and uniqueness theorem is given in the book, on page 436. Generally when dealing with the numerical solution, we assume the BVP has a unique solution.

The more general form of BVP is to write it in the form

$$
\begin{gather*}
\mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y}), \quad a<x<b \\
A \mathbf{y}(a)+B \mathbf{y}(b)=\gamma \tag{7}
\end{gather*}
$$

with $\mathbf{y} \in \mathbb{R}^{n}, A$ and $B$ square matrices of order $n$, and $\gamma \in \mathbb{R}^{n}$ given data. There is a theory for these problems that is analogous to that for the two-point BVP, but we omit it here and in the text. We will examine numerical methods for the two-point problem, although most schemes generalize to (7).

## SHOOTING METHODS

The central idea is to reduce solving the BVP to that of solving a sequence of inital value problems (IVP). To simplify the presentation, we consider a BVP with separated boundary conditions:

$$
\begin{gather*}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), \quad a<x<b \\
a_{0} y(a)-a_{1} y^{\prime}(a)=\gamma_{1}  \tag{8}\\
b_{0} y(b)+b_{1} y^{\prime}(b)=\gamma_{2}
\end{gather*}
$$

Solve the initial value problem

$$
\begin{gather*}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), \quad a<x<b \\
y(a)=a_{1} s-c_{1} \gamma_{1}, \quad y^{\prime}(a)=a_{0} s-c_{0} \gamma_{1} \tag{9}
\end{gather*}
$$

The constants $c_{0}, c_{1}$ are arbitrary satisfying

$$
a_{1} c_{0}-a_{0} c_{1}=1
$$

of which there are many possible choices. The parameter $s$ is the shooting parameter, and it is to be chosen to find a solution satisfying the boundary conditions at $x=b$.

Let $Y(x ; s)$ be a solution of (9). Then for any choice of the unspecified parameter $s$, the function $Y(x ; s)$ satisfies the boundary condition

$$
a_{0} Y(a ; s)-a_{1} Y^{\prime}(a ; s)=\gamma_{1}
$$

To see this,

$$
\begin{aligned}
a_{0} Y(a ; s)-a_{1} Y^{\prime}(a ; s)= & a_{0}\left(a_{1} s-c_{1} \gamma_{1}\right) \\
& -a_{1}\left(a_{0} s-c_{0} \gamma_{1}\right) \\
= & \left(a_{1} c_{0}-a_{0} c_{1}\right) \gamma_{1}=\gamma_{1}
\end{aligned}
$$

We want to choose $s$ so as to have $Y(x ; s)$ also satisfy the boundary condition

$$
b_{0} Y(b ; s)+b_{1} Y^{\prime}(b ; s)=\gamma_{2}
$$

Introduce

$$
\varphi(s)=b_{0} Y(b ; s)+b_{1} Y^{\prime}(b ; s)-\gamma_{2}
$$

We want to find $s=s^{*}$ for which $\varphi\left(s^{*}\right)=0$.

Look at Newton's method for solving this problem:

$$
\begin{equation*}
s_{m+1}=s_{m}-\frac{\varphi\left(s_{m}\right)}{\varphi^{\prime}\left(s_{m}\right)}, \quad m=0,1, \ldots \tag{10}
\end{equation*}
$$

Differentiate the definition

$$
\varphi(s)=b_{0} Y(b ; s)+b_{1} Y^{\prime}(b ; s)-\gamma_{2}
$$

to obtain

$$
\begin{gathered}
\varphi^{\prime}(s)=b_{0} \xi_{s}(b)+b_{1} \xi_{s}^{\prime}(b) \\
\xi_{s}(x)=\frac{\partial Y(x ; s)}{\partial s}
\end{gathered}
$$

Since $Y(x ; s)$ satisfies

$$
\begin{gather*}
Y^{\prime \prime}(x ; s)=f\left(x, Y(x ; s), Y^{\prime}(x ; s)\right), \quad a<x<b \\
Y(a ; s)=a_{1} s-c_{1} \gamma_{1}, \quad Y^{\prime}(a ; s)=a_{0} s-c_{0} \gamma_{1} \tag{11}
\end{gather*}
$$

differentiate it with respect to $s$ to obtain

$$
\begin{align*}
& \xi_{s}^{\prime \prime}(x)= f_{2}\left(x, Y(x ; s), Y^{\prime}(x ; s)\right) \xi_{s}(x) \\
&+f_{3}\left(x, Y(x ; s), Y^{\prime}(x ; s)\right) \xi_{s}^{\prime}(x)  \tag{12}\\
& \xi_{s}(a)=a_{1}, \quad \xi_{s}^{\prime}(a)=a_{0}
\end{align*}
$$

We combine (11) and (12) and rewrite them as a system of four first order equations, for the knowns $Y(x ; s), Y^{\prime}(x ; s), \xi_{s}(x), \xi_{s}^{\prime}(x)$, and we solve for their values at $b$. Then we proceed with the iteration (10), to find a new value of $s_{m+1}$ from the value $s_{m}$.

It can be shown that if a method of order $p$ is used, then of course, all errors at $x=b$ are of order $O\left(h^{p}\right)$ where $h$ is the stepsize. Then it can also be proven that

$$
s_{h}^{*}=s^{*}+O\left(h^{p}\right)
$$

where $s_{h}^{*}$ is the limit of $\left\{s_{m}\right\}$ obtained when using the numerical method of order $p$. Moreover,

$$
E_{h} \equiv \max _{a \leq x \leq b}\left|Y(x)-y_{h}\left(x ; s_{h}^{*}\right)\right|=O\left(h^{p}\right)
$$

with $y_{h}\left(x ; s_{h}^{*}\right)$ the numerical solution.

## EXAMPLE

Solve

$$
\begin{gathered}
y^{\prime \prime}=-y+\frac{2\left(y^{\prime}\right)^{2}}{y}, \quad-1<x<1 \\
y(-1)=y(1)=\frac{1}{e+e^{-1}} \doteq .324027137
\end{gathered}
$$

The true solution is

$$
Y(x)=\frac{1}{e^{x}+e^{-x}}
$$

The initial value problem for the shooting method is

$$
\begin{gathered}
y^{\prime \prime}=-y+\frac{2\left(y^{\prime}\right)^{2}}{y}, \quad x \geq-1 \\
y(-1)=\frac{1}{e+e^{-1}}, \quad y^{\prime}(-1)=s
\end{gathered}
$$

The function $\varphi(s)$ is

$$
\varphi(s)=Y(1 ; s)-\frac{1}{e+e^{-1}}, \quad \varphi^{\prime}(s)=\xi_{s}(1)
$$

The associated problem for $\xi_{s}$ is

$$
\begin{gathered}
\xi_{s}^{\prime \prime}(x)=\left[-1-2\left(\frac{y^{\prime}}{y}\right)^{2}\right] \xi_{s}+4 \frac{y^{\prime}}{y} \xi_{s}^{\prime} \\
\xi_{s}(-1)=0, \quad \xi_{s}^{\prime}(-1)=1
\end{gathered}
$$

We use a second order Runge-Kutta method, which has an error $O\left(h^{2}\right)$. In this instance, the true $s^{*}$ is known:

$$
s^{*}=\frac{e-e^{-1}}{\left(e+e^{-1}\right)^{2}}
$$

A table of the errors $s-s_{h}^{*}$ and $E_{h}$ are given in Table 6.29 on page 440 of the text. They agree with the theoretical rates of $O\left(h^{2}\right)$.

## FINITE DIFFERENCE METHODS

Finite difference methods can be applied to both the two-point $2^{\text {nd }}$ order BVP

$$
\begin{gathered}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), \quad a<x<b \\
A\left[\begin{array}{c}
y(a) \\
y^{\prime}(a)
\end{array}\right]+B\left[\begin{array}{c}
y(b) \\
y^{\prime}(b)
\end{array}\right]=\left[\begin{array}{l}
\gamma_{1} \\
\gamma_{2}
\end{array}\right]
\end{gathered}
$$

and to the BVP set as a first order system,

$$
\begin{gathered}
\mathbf{y}^{\prime}=\mathbf{f}(x, \mathbf{y}), \quad a<x<b \\
A \mathbf{y}(a)+B \mathbf{y}(b)=\gamma
\end{gathered}
$$

To simplify the presentation here and in the text, I consider only the special case

$$
\begin{gather*}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), \quad a<x<b  \tag{13}\\
y(a)=\gamma_{1}, \quad y(b)=\gamma_{2}
\end{gather*}
$$

Later I consider some generalizations.

Recall the numerical differentiation formulas

$$
g^{\prime \prime}(x)=\frac{g(x+h)-2 g(x)+g(x-h)}{h^{2}}-\frac{h^{2}}{12} g^{(4)}(\xi)
$$

with $x-h \leq \xi \leq x+h$, and

$$
g^{\prime}(x)=\frac{g(x+h)-g(x-h)}{2 h}-\frac{h^{2}}{6} g^{(3)}(\eta)
$$

with $x-h \leq \eta \leq x+h$. These are from (5.7.18) and (5.7.11) of the text, respectively. Apply these to approximate

$$
\begin{gathered}
y^{\prime \prime}=f\left(x, y, y^{\prime}\right), \quad a<x<b \\
y(a)=\gamma_{1}, \quad y(b)=\gamma_{2}
\end{gathered}
$$

We introduce a stepsize $h$ and node points $\left\{x_{i}\right\}$ by

$$
h=\frac{b-a}{n}, \quad x_{i}=a+i h, \quad i=0,1, \ldots, n
$$

We approximate the BVP at each interior node point $x_{i}, i=1, \ldots, n-1$. Let $Y(x)$ denote the true solution of the BVP.

Using the numerical derivative relations in

$$
\begin{aligned}
& Y^{\prime \prime}\left(x_{i}\right)=f\left(x_{i}, Y\left(x_{i}\right), Y^{\prime}\left(x_{i}\right)\right), \quad i=1, \ldots, n-1 \\
& \frac{Y\left(x_{i+1}\right)-2 Y\left(x_{i}\right)+Y\left(x_{i-1}\right)}{h^{2}}-\frac{h^{2}}{12} Y^{(4)}\left(\xi_{i}\right) \\
& \quad=f\left(x_{i}, Y\left(x_{i}\right), \frac{Y\left(x_{i+1}\right)-Y\left(x_{i-1}\right)}{2 h}-\frac{h^{2}}{6} Y^{\prime \prime \prime}\left(\eta_{i}\right)\right)
\end{aligned}
$$

for $i=1, \ldots, n-1$, with $x_{i-1} \leq \xi_{i}, \eta_{i} \leq x_{i+1}$. Note that at $i=1$ in (14), the value $Y\left(x_{0}\right)=\gamma_{1}$ is needed; and at $i=n-1$, the value $Y\left(x_{n}\right)=\gamma_{2}$ is needed.

Dropping the error terms, we obtain the approximating system

$$
\begin{align*}
& \frac{y_{i+1}-2 y_{i}+y_{i-1}}{h^{2}} \\
& \quad=f\left(x_{i}, y_{i}, \frac{y_{i+1}-y_{i-1}}{2 h}\right), \quad i=1, \ldots, n-1 \\
& y_{0}=\gamma_{1}, \quad y_{n}=\gamma_{2} \tag{15}
\end{align*}
$$

We can write this in matrix-vector form. Introduce

$$
\begin{gathered}
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n-1}
\end{array}\right], \quad \widehat{\mathbf{f}}(\mathbf{y})=\left[\begin{array}{c}
f\left(x_{1}, y_{1}, \frac{y_{2}-y_{0}}{2 h}\right) \\
\vdots \\
f\left(x_{n-1}, y_{n-1}, \frac{y_{n}-y_{n-2}}{2 h}\right)
\end{array}\right] \\
A=\left[\begin{array}{ccccc}
-2 & 1 & 0 & \cdots & 0 \\
1 & -2 & 1 & & \vdots \\
0 & \ddots & \ddots & \ddots & \\
\vdots & & 1 & -2 & 1 \\
0 & \cdots & 0 & 1 & -2
\end{array}\right] \\
\mathbf{g}=\left[-\frac{\gamma_{1}}{h^{2}}, 0, \ldots, 0,-\frac{\gamma_{2}}{h^{2}}\right]^{T}
\end{gathered}
$$

Then our discretization can be written

$$
\begin{equation*}
\frac{1}{h^{2}} A \mathrm{y}=\widehat{\mathrm{f}}(\mathrm{y})+\mathrm{g} \tag{16}
\end{equation*}
$$

This is a system of $n-1$ nonlinear equations in $n-1$ unknowns.

## ERROR

Let the numerical solution also be denoted by $\mathbf{y}_{h}$. Then it can be shown under various assumptions on $f$ and the BVP (13) that

$$
\max _{i}\left|Y\left(x_{i}\right)-y_{i}\right| \leq c h^{2}
$$

for all suitably small values of $h$. The theory for this is extended and fairly sophisticated, and we omit it here. References are given in the text.

This theory can also be extended to show that

$$
Y\left(x_{i}\right)-y_{i}=G\left(x_{i}\right) h^{2}+O\left(h^{4}\right), \quad i=1, \ldots, n-1
$$

with $G(x)$ independent of $h$, provided both the solution $Y(x)$ and the function $f(x, u, v)$ are sufficiently smooth. With this, one can then carry out Richardson extrapolation on the solution, as well as using Richardson's error estimation formulas.

## NEWTON'S METHOD

There are a number of methods for solving nonlinear systems

$$
\mathrm{g}(\mathrm{y})=0
$$

with $\mathbf{g}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$. Here we consider Newton's method:
$\mathbf{y}^{(m+1)}=\mathbf{y}^{(m)}-\left[\mathbf{G}\left(\mathbf{y}^{(m)}\right)\right]^{-1} \mathbf{g}\left(\mathbf{y}^{(m)}\right), \quad m=0,1, \ldots$
In this, $G(y)$ denotes the Jacobian matrix for $\mathbf{g}(\mathbf{y})$ :

$$
[\mathbf{G}(\mathbf{y})]_{i, j}=\frac{\partial g_{i}\left(y_{1}, \ldots, y_{N}\right)}{\partial y_{j}}
$$

From earlier in $\S 2.11$ of Chapter 2, this method converges quadratically to a root $\alpha$ if $\mathbf{G}(\alpha)$ is nonsingular and $\mathbf{y}^{(0)}$ is chosen sufficiently close to $\alpha$ :

$$
\left\|\alpha-\mathbf{y}^{(m+1)}\right\|_{\infty} \leq c\left\|\alpha-\mathbf{y}^{(m)}\right\|_{\infty}^{2}, \quad m \geq 0
$$

for some $c>0$.

## SOLVING THE BVP SYSTEM

Recall the system (16) and write it as

$$
\begin{equation*}
\mathrm{g}(\mathrm{y}) \equiv \frac{1}{h^{2}} A \mathrm{y}-\widehat{\mathrm{f}}(\mathrm{y})-\mathrm{g}=\mathbf{0} \tag{17}
\end{equation*}
$$

with $N=n-1$. Then

$$
\begin{equation*}
\mathbf{G}(\mathbf{y})=\frac{1}{h^{2}} A-\widehat{\mathbf{F}}(\mathbf{y}) \tag{18}
\end{equation*}
$$

with $\widehat{\mathbf{F}}(\mathbf{y})$ the Jacobian matrix for $\widehat{\mathbf{f}}(\mathrm{y})$. Since

$$
[\widehat{\mathbf{f}}(\mathbf{y})]_{i}=f\left(x_{i}, y_{i}, \frac{y_{i+1}-y_{i-1}}{2 h}\right)
$$

$\widehat{\mathbf{F}}(\mathrm{y})$ is tridiagonal, with the formulas given on page 442 of the text. For example,

$$
[\widehat{\mathbf{F}}(\mathbf{y})]_{i, i}=f_{2}\left(x_{i}, y_{i}, \frac{y_{i+1}-y_{i-1}}{2 h}\right)
$$

with

$$
f_{2}(x, u, v)=\frac{\partial f(x, u, v)}{\partial u}
$$

## JACOBIANS

Another way of looking at the computation of the Jacobian $\mathrm{G}(\mathrm{y})$ for a function $\mathrm{g}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is as follows. The matrix function $G(y)$ has the property that for any increment $\delta \in \mathbb{R}^{N}$,

$$
\begin{equation*}
\mathrm{g}(\mathrm{y}+\delta)-\mathrm{g}(\mathrm{y})=\mathrm{G}(\mathrm{y}) \delta+O\left(\|\delta\|^{2}\right) \tag{19}
\end{equation*}
$$

Thus if $\mathrm{g}(\mathrm{y})$ is a linear function,

$$
\begin{equation*}
\mathrm{g}(\mathrm{y})=B \mathrm{y} \tag{20}
\end{equation*}
$$

with $B$ a matrix of order $N \times N$, then

$$
\mathrm{g}(\mathrm{y}+\delta)-\mathrm{g}(\mathrm{y})=B(\mathrm{y}+\delta)-B \mathbf{y}=B \delta
$$

with no $O\left(\|\delta\|^{2}\right)$ term. Therefore the Jacobian matrix of $(20)$ is $\mathrm{G}(\mathrm{y})=B$.

When dealing with nonlinear functions $\mathrm{g}(\mathrm{y})$ on vector spaces, especially infinite dimensional function spaces, the quantity $\mathbf{G}(\mathrm{y})$ is called the Frechet derivative of $\mathrm{g}(\mathrm{y})$.

Return to Newton's method
$\mathbf{y}^{(m+1)}=\mathbf{y}^{(m)}-\left[\mathbf{G}\left(\mathbf{y}^{(m)}\right)\right]^{-1} \mathbf{g}\left(\mathbf{y}^{(m)}\right), \quad m=0,1, \ldots$
applied to the solution of

$$
\mathrm{g}(\mathrm{y}) \equiv \frac{1}{h^{2}} A \mathbf{y}-\widehat{\mathbf{f}}(\mathbf{y})+\mathbf{g}=\mathbf{0}
$$

with

$$
\mathbf{G}(\mathbf{y})=\frac{1}{h^{2}} A-\widehat{\mathbf{F}}(\mathbf{y})
$$

Rewrite the iteration as

$$
\begin{aligned}
\mathbf{y}^{(m+1)} & =\mathbf{y}^{(m)}-\delta^{(m)} \\
\mathbf{G}\left(\mathbf{y}^{(m)}\right) \delta^{(m)} & =\mathbf{g}\left(\mathbf{y}^{(m)}\right), \quad m=0,1, \ldots
\end{aligned}
$$

This last system is tridiagonal, and thus it can be solved very rapidly. Often, the matrix $\mathbf{G}\left(\mathbf{y}^{(m)}\right)$ may be kept constant over several iterations, to save further on the solution process; but this will change the quadratic convergence of the iterates to fast linear convergence.

## EXAMPLE

Solve the BVP

$$
\begin{gathered}
y^{\prime \prime}=-y+\frac{2\left(y^{\prime}\right)^{2}}{y}, \quad-1<x<1 \\
y(-1)=y(1)=\frac{1}{e+e^{-1}} \doteq .324027137
\end{gathered}
$$

The true solution is

$$
Y(x)=\frac{1}{e^{x}+e^{-x}}
$$

Newton's method was used to solve the nonlinear system, and the iteration was stopped when

$$
\left\|\mathbf{y}^{(m)}-\mathbf{y}^{(m-1)}\right\|_{\infty} \leq 10^{-10}
$$

was satisfied. Also let

$$
E_{h}=\max _{0 \leq i \leq h}\left|Y\left(x_{i}\right)-\mathbf{y}_{h}\left(x_{i}\right)\right|
$$

| $n$ | $E_{h}$ | Ratio |
| ---: | :---: | :---: |
| 4 | $2.63 \mathrm{E}-2$ |  |
| 8 | $5.87 \mathrm{E}-3$ | 4.48 |
| 16 | $1.43 \mathrm{E}-3$ | 4.11 |
| 32 | $3.55 \mathrm{E}-4$ | 4.03 |
| 64 | $8.86 \mathrm{E}-5$ | 4.01 |

## MODIFICATIONS

If our boundary conditions in involve derivatives, then these must also be approximated. For example,

$$
Y(a)=Y^{\prime}(a)
$$

might be approximated by

$$
y_{0}=\frac{y_{1}-y_{0}}{h}
$$

although this is not a very accurate approximation. This new equation would be added to the approximations at the inner node points $x_{1}, \ldots, x_{n-1}$.

