To solve $x^2 - 5 = 0$ for the root $\alpha = \sqrt{5}$, begin with

$$x = x + c\left(x^2 - 5\right) \equiv g(x)$$

Then

$$g'(x) = 1 + 2cx$$
$$g'\left(\sqrt{5}\right) = 1 + 2c\sqrt{5}$$

Choose c so that $g'(\sqrt{5}) \approx 0$,

$$c \approx \frac{-1}{2\sqrt{5}} \doteq -0.22361$$

Using $c = -\frac{1}{4}$, we have the iteration

$$x_{n+1} = x_n - \frac{1}{4}(x_n^2 - 5), \qquad n \ge 0$$

The rate of linear convergence is given by

$$g'\left(\sqrt{5}\right) = 1 - \frac{1}{2}\sqrt{5} \doteq -0.11803$$

n	x_n	$\alpha - x_n$	Ratio
0	2.0	2.361E - 1	
1	2.25	-1.393E - 2	0590
2	2.234375	1.693E - 3	1215
3	2.2362709	-1.991E - 4	1176
4	2.236044466	2.351E - 5	1181
5	2.236070753	-2.276E - 6	-1181