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QUADRATURE OF SINGULAR INTEGRANDS OVER SURFACES*

KENDALL ATKINSONT

Abstract. Consider integration over a simple closed smooth surface in R3, one that is homeomorphic to the
unit sphere, and suppose the integrand has a point singularity. We propose a numerical integration method based
on using transformations that lead to an integration problem over the unit sphere with an integrand that is much
smoother. At this point, the trapezoidal rule is applied to the spherical coordinate representation of the problem.
The method is simple to apply and it results in rapid convergence. The intended application is to the evaluation of
boundary integrals arising in boundary integral equation methods in potential theory and the radiosity equation.
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1. Introduction. Consider the approximation of a surface integral
(L1) 1) = [ s(@asa

in which p(Q) is singular at a point Q = P. This is a common integration problem when
implementing boundary integral equation methods. Examples are the single layer integral

Y(Q)
1.2) /S 10— pjiSe

and the double layer integral

(1.3) /S % [ﬁ] Y(Q)dSq

in which P € S. In this paper we introduce an efficient numerical integration method for
such integrals.

We limit the surfaces S to be the boundary of a bounded simply-connected region €2, and
we assume that S is a ‘smooth surface’. In addition, we assume that a mapping

(1.4) MU s

onto

is given with U the unit sphere in R®. For example, with the ellipsoidal surface S defined
implicitly by

) G ORIOEE

wWe can write
(1.6) M:(§n,¢) €U = (2,y,2) = (af,bn,cC) € S.

Throughout this paper, we assume that the surface S and the mapping M are as differen-
tiable as needed. To simplify the later error analysis, we also assume that there is an open
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e—neighborhood of U, for some € > 0, on which M is defined, one-to-one, and differen-
tiable, with a non-zero Jacobian when considered as a three-dimensional mapping. This can
be weakened, and we discuss this at the conclusion of the paper.

With such transformations (1.4), the integral (1.1) becomes

(17) 10)= [ 0(M@) Tm(@ a5,

~

with Jo(Q) the Jacobian of the mapping M considered as a two-dimensional mapping of
the surface U onto the surface S. For example, with the ellipsoidal surface (1.6),

~

Tn(@) =\ (6ct)* + (aen)® + (b0, Q= (&m0 €.
In the appendix to this paper we give a way to calculate JM(@) for general transformations
M. Based on being able to perform this transformation of variables, we often restrict our
interest in this paper to the unit sphere U. The numerical examples, however, will illustrate
the use of more general surfaces.

Boundary integral equation methods are of two general types: (i) boundary element
methods in which S is decomposed into small elements and p is approximated by a low de-
gree polynomial over each element; and (ii) using approximations to p of a global type over
the entire surface S, for example, using spherical polynomials. The methods of this paper
are intended for integrals arising in the latter second type of boundary integral method. For
example, see [1], [3], [6]; and for an earlier discussion of the numerical approximation of sur-
face integrals with a point singularity, see [2]. For a more general introduction to quadrature
methods for the sphere, see Stroud [12].

In §2, we introduce and analyze the numerical method, doing so for p a smooth function,
and we illustrate it numerically in §3. In §4 the numerical method is extended to p having a
point-singularity, and numerical examples are given in §5.

2. Thenumerical method. We begin with the problem of approximating

2.1) 1(f) = /U F(Q)dSo

in which f is several times continuously differentiable over the unit sphere U. In spherical
coordinates, this integral can be written as

iy 2w
I(f)= / / f (cos ¢sin 8, sin ¢ sin 6, cos @) sin 6 d¢ db.
o Jo

Rather than approximating this integral directly, we begin by introducing a transformation
£:U U, with respect to spherical coordinates on U,

onto
(2.2)
_ g . g
L:Q = (cospsinb,sinpsin b, cosh) — Q = (cos $sin? 0, sin ¢ sin’ 6, cos ) = L(¢,9).

Vcos? 6 + sin®? 6
In this transformation, ¢ > 1 is a ‘grading parameter’. The north and south poles of U remain
fixed, while the region around them is distorted by the mapping.
The integral I(f) becomes

(2.3) I(f) = /U f (E(Q)) Jr (@) S5
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with J. (@) the Jacobian of the mapping £,

sin®?™" 9 (g cos? 0 + sin® 0)
(sin®® 6 + cos? 6)

@4)  Jc(Q) = IDsL(9,6) x DsL(6,6)| =
In spherical coordinates,

2w
f(&n,¢) dpde,

7sin?471 @ (g cos? § + sin? @
1= [ a i)
0 (sin®? 0 + cos? ) >
(cos ¢ sin? 0, sin ¢ sin? 6, cos 6)

V/sin?? 0 + cos? 0

For the example ellipsoidal surface of (1.5),

7sin%971 @ (g cos? 6 + sin? @
10) = [r@iso = [ ( nf)
s 0 (sin®? @ + cos2 6) 2

(2.5)

(&n,¢) =

(2.6)

< [ €m0 000+ (acn)® + (abc)ds .

Forn >1,leth = w/n, and

For a generic function g, introduce the bivariate trapezoidal approximation

2n

2w n
/ / (sin @, cos 8, sin ¢, cos ¢) d¢p df ~ 22 ”g(sinﬂk,cos&,sin@,cos¢j),

k=0 j=0

in which the superscript notation " means to multiply the first and last terms by before
summing. Apply this to (2.5). Note that the integrand is zero for & = 0,7 and that the
integrand has period 27 in ¢. Therefore

T 2w
/ / g(sin @, cos 8, sin ¢, cos ¢) d¢ db
0o Jo
n—12n
27) ~ h2ZZg(sin O, cos O, sin ¢, cos ¢;) = T,

k=1j=1

sin??1 9 (gcos? @ + sin? 6
9= ( 3 )f(é“,n,C),
(sin*? @ + cos26) 2

with (&,7,() as in (2.5).

We note that closely related transformations for single integrals have been used often
over the past several decades, with the trapezoidal rule applied to the transformed integral
(e.g. see Sidi [9], [10], [11]). A very readable overview and analysis of such transformations
and the associated trapezoidal rule is given in Elliott [5].
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2.1. Error analysis. Apply the trapezoidal rule

to the integral

/ t() sin™ 6 db,
0

with ¢(8) a sufficiently differentiable function and m > 0 an integer. More precisely, assume
() € L(0,) with

| m+2, meven,
|l m+1, modd

Then
(2.8) I-T,=0(h?).

The proof is an immediate corollary of the Euler-MacLaurin expansion [4, p. 285]. For later
reference, we state the Euler-MacLaurin expansion.

The Euler-MacLaurin formula. Let m > 0, n > 1, and define h = (b—a) /n, z; =
a+jhforj =0,1,...,n. Further assume ¢ (z) is 2m + 2 times differentiable on [a, b] with
¢p(m+2) € L (a,b). Then

b n m .
[ v@rde = 1Y wiay) = 3o WD) = @)
@ j=0 i=1 :

h2m+2 b
N —
@2m+2)!/,

(2.9)
r—a

Bomiz ( ) Y2mt2) () da.

In this formula, {By} are the Bernoulli constants, By (z) is the Bernoulli polynomial of
degree k, and By, (z) is the periodic extension of By (z) on [0, 1].
Using this result, we have the following convergence theorem.

THEOREM 2.1. In the integral (2.5), assume that ¢ > 1 and that 2q¢ is a positive integer.
Introduce

_ | 2q, 2q even,
P=1 2¢+1, 2qodd.

Assume that f is p-times differentiable with f(») € L (U). Then the error in approximating
(2.1) by (2.7) satisfies

(2.10) I-T,=0(h").

Proof. In order to prove this, we use the Euler-MacLaurin expansion, applying it to both
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the integration in ¢ and in 6. More precisely, we write

- / sin®*~" 6 (g cos® 6 + sin® §)
(sin®? 6 + cos? 0)

f(§,77,C) d¢ do

“Lgin2 19, (g cos? 0y, + sin® 0y,)

27
—h I k>, Cr) do

3
=1 (sin®? @) + cos? 0x) 2
2.11) g o
+hz sin k (g cos? 0y, + susl k)
=1 (sin®? @) + cos? 0y) 2
27 2n
x| [ € G) 46— B (s Ges) |
0 =
with

(cos ¢ sin? By, sin ¢ sin? Oy, cos O,)
\/sin2" 01 + cos? 0y,
(cos ¢; sin? Oy, sin ¢; sin? Oy, cos Qk)
\/sm 90 + cos? 6,

(&ks k> Cr) =

’

('Ek,j: Nk,j5 Ck,j)

The integration in ¢ is that of a periodic function over [0, 27], and we need only show that
the pM-order derivative with respect to ¢ is absolutely integrable over 0 < ¢ < 2. This is
straightforward, as all such derivatives are well-defined and continuous.

When considering the integration in (2.5) with respect to 4, write the integrand as
F(6)G(6) with

qcos? 6 + sin® 6
(sm 70 + cos? 0)

G(6) = | f(E,n,C) dg-

~sin??71 6,

F(6) =

For the integration in g, we need to look at the derivatives of F'(8)G(8) with respect to 6 for
0 < 6 < 7. In particular, we must show that

d* "

. — |F = =1:2:p—
(2.12) 7w FOGOI| =0,k P—3,
2.13 & FOG( LP (0
(2.13) 5 [FO)GO)] € L7 (0,7)..

We show (2.12) by instead showing
dk
(2.14) P [F(9)G)] =0, k=1:2:p-3, 0=0,r.
For the derivatives of F(6)G(6), we write
d’“ i .
(2.15) - [F Z( )F<J> 0)G =) (9),

J=0
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and then look at the individual derivatives of F' and G.
As a part of differentiating F'(8), we introduce the following expressions. Let

R(6) = sin®? @ + cos? §

=sin??6 —sin? 0 + 1, 0<8<m.
Then
R'(6) = 2cosf [gsin®? ' § —sind]
(2.16) = ¢1(0)sin?™ § — c2(6) sin b,

with ¢ (8) and c» () infinitely differentiable functions of 6. It will be important to keep track
of powers of sin 6 in the various derivatives. We will use the notation ¢ (6), & > 1, to denote
generic smooth functions of . Next,

(2.17) diG [gcos® 6 + sin” 0] = 2 (1 — g)sinfcosd = (1 — g)sin (26) .

For the derivatives of GG, we need the derivatives of (£, 7, ) considered as a function of
0. The first derivatives are given by

d§
do — sin?-19 gcosf B c1(#) sin” 0 [ cos ¢ ]
dn R()  2R(9)% sin ¢
dé > ™ £
=c5(0)
. . g1 cos ¢
(2.18) = ¢5(0) sin? " 0 [ in ¢ ] ,
(2.19) de = sinf —1__al) COBSG = c6(0) sin 6.
do R(6) 2R(9)2

We discuss later the higher order derivatives of (£, 7, ().

We need to prove both (2.12) and (2.13), and in doing so it is crucial to consider the
various powers of sin  that occur in the derivatives of F' and G. When 2g¢ is an integer, F'()
is infinitely differentiable on [0, 7]. When g is an integer, life is simpler in that there are never
any negative powers of sin @ occurring in the differentiation process, with either F' or G, no
matter how high the order of the derivative. As a consequence we can show both (2.12) and
(2.13) with no difficulty. Using (2.8), the main result (2.10) then follows with no difficulty.

From hereon we consider only the case that 2q¢ is an odd integer; ¢ = r/2 for some odd
integer . Thus p = 2¢ + 1 is an even integer. The proof of (2.13) requires showing that the
integrand F'(0)G(0) is p-times differentiable with

dP

(2.20) e

[F(6)G(9)] € L(0,m).
We examine the various derivatives of both F' and G to determine the powers of sin 8 occur-
ring in both.

To better follow what is happening, consider only the case of 2¢ = 3 and p = 4. We then
need to show (2.12) and (2.13) with p = 4. We are using the Euler-Maclaurin formula (2.9)
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with m = 1, and the form we need is
P n—1 m B
| FOGE) @8- FIGE0) = >R FOCOL
k=1 i=1

(2.21)

+% OWE (%) % [F()G(6)] db.

The summation limits are changed because F'(0) = F(w) = 0. We want to show the trape-
zoidal error is of size O (h*).
For this case,

_ 1.5cos®f+ sin?
- 3

(2.22) F(6) sin? 6,

(sin® 0 + cos2 ) 2

27

(229) GO = [ f&n.0) do.

0

(cos ¢sin'® 0, sin ¢sin'® , cos 6)
2.24 ,1n,0) = ,
(&9 &m0 V/sin® @ + cos2 §

R(#) = sin® 6 + cos® 0, 0<6<m,
R'(6) = ¢,(0) sin® 8 — c5(#) sin b,

with ¢ (8) and ¢ (8) infinitely differentiable. Also,
d 2 .2 . 1,
i [gcos® 6 + sin® §] = —sinfcosf = —5 sin (26).

For the derivatives of (£, 7, (),

dg
a9 | _ Jend 1.5cos  c1(6) sin® @ — ¢ () sin” 0 [ cos ¢ ]
dn | R(6) 2R(6)3 sin ¢
df Ec;r(a)
= ca(0)V5md | 0
a¢c . -1 [c1(6)sinf —ca(f)] cosf | _ .
- sin 6 l 70 2R(6)E ] = ¢4(0)sind,

with c3(6) and ¢4 (8) infinitely differentiable. For the first derivative of G(6),

o [Tl
G0 = [0+ G+ 15 ds

with f denoting the partial derivative of f with respect to the argument k. We note that G’ (9)
is continuous for 0 < 4 < m, with G'(f) =0 atf = 0, 7.
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For the second derivative,

” ’ d£>2 (dn>2 (dC)2
2.25 G"(0) = as _(an d¢
(2.25) (6) /0 lfl,l (d@ +he({gp) Thalg
d d d¢ d dn d
220 + 2o g + 2y g + 2os g gy
d? d? d2
220 +f1£ + o + fa dﬁg] a9

The terms in (2.25) and (2.26) involve sin* @ for k = 1, 1.5, and 2, and thus the corresponding
integrals are continuous and are zero at 8 = 0, . For the terms in (2.27), we need

B
gz | [ c(0) ) o ] [cosgb]
(2.28) . = [2m+c3(ﬂ)\/s1 0 sing |’
do?
2
(2.29) % = ¢4(0) cos 0 + ¢4 () sin 6.

The general pattern will continue. The higher order derivatives of (£, n, ¢) will contain powers
of sin 4 as follows.

dke

der | . 5— cos ¢

d*n =0 ((sm0)15 k) [ sin ¢ ] ’

dok
d*¢

WzO(l),

for k = 1,2,3,4. The same behaviour carries across to the derivatives of G(6):
(2.30) G @) =0 ((sin 0)15*’“)  k=1,2,34.

For the derivatives of F'(#), we have the following.

1. 2 s 2 1. 2 =2
F'(8) = 25in 0 cosd 5 cos Otsm 0+sin201[ 5 cos 0—|;s1n 0
R(0)3 @ R@)?
2 -2 .
_ 2sin0cos01'5cos Gtsm 0 _Sin2€c05051£10
R(0)2 R(0)2
3 . ,,1.5c0os>6+sin*@ . .
— —sin“ 4 c1(0) sin“ 0 — ¢(0) sin 8
1.5cos? 0 + sin® §
2.31 = sin (26 +¢5(6) sin® 0,
2.31) (20) = 5(6)

2 .2
F" () = 2 cos (26) 1.5 CO;(Z;; sin” 0 + c6(6) sin? 4,
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1. 2 2
F"(0) = —4sin (26) 5"02(00)2 S0 L a(8) siné,

for suitably defined infinitely differentiable functions cg(#) and c;(6). The function F(4) ()
is well-defined, but does not contain any obvious factor of sin 6.
Using (2.15) with k& = 4,
d4
de*

[F()G(9)] = F(0)GW () + 4FV(0)G® (8) + 6F D (9)G?(8)
+4F®(6)GV(9) + FD(6)G(H).

Using the above results, we have
FO)GW (6), FO(©)G®) (), FO©)G () = 0 ((sin6)~

F®@)GM () = ((sme)%)
FUW(6)GO) =0(1).

[N

).

This leads to
d4
g1 [F(O)GO)] € L(0,7).
Also,
d
75 [FOGO)] = F'(6)G(0) + F(O)G'(9)-
Using the earlier results on the dependence of F' and G on sin 6, it follows that
d
T [F(8)G0)] =0, 0 =0,m.

Referring to (2.21), this proves (2.10) for the case ¢ = 1.5.

For the general case of ¢ = /2 with » > 3 an odd integer, a similar proof can be given.
For example, when we consider ¢ = 2.5, we have p = 6 and the functions of (2.22)-(2.24)
are

2. 2
F(o) = 5cos? f + sin” @ 0 sint o,

sin® 6 + cos? 6) 2
(

G(6) = | f(f,n,C) de,

(cos ¢sin® 6, sin ¢ sin®* 6, cos 6)

V/sin® 6 + cos? 6
Then a similar set of results are true regarding the dependence on powers of sin @ for the
derivatives of £ and G, but with the powers increased by 2 in the derivatives of F'. We omit a
general treatment as we believe it is clear that such a general analysis follows using the above
ideas. O
The rates of (2.10), and even better, are observed in practice. This is illustrated with the
numerical examples of the following section. Based on those examples and on other partial
theoretical results, we state the following conjecture that extends the above theorem.
CONJECTURE 2.2. Assume ¢ > 1. Under suitable assumptions on the function f, the
error in approximating (2.1) by (2.7) satisfies

(2.32) I-T,=0(h*).

&mn,¢) =
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Fi1G. 3.1. The nonsymmetric surface of (3.1)

3. Numerical examples. We give numerical examples based on two surfaces. The first
is the ellipsoid of (1.5), and the second is given by

3 a§
3.1) M: Z eV +— (2,4,2)=p(&n,0) IZZ €5,

p(&n, Q) =d (& +9€%) +e(n” +gn°) +9 (¢ +9¢%).
For the parameters
(a7 b? CJ d) e’ f? g) = (17 1'57 2’ ]‘7 0‘77 37 0'3)

a sketch of the surface is given in Figure 3.1 and we refer to it as a ‘peanut surface’. The
Jacobian Ja4(Q) was calculated by the method described in the appendix. This surface was
designed to demonstrate empirically that the results of the paper do not depend on any sym-

metry of the surface, as this second surface has no obvious geometric symmetry.

3.1. Numerical results: Ellipsoid. We approximate the integral
(3.2) / e 2913248 = 18.340419192002230
S

over the ellipsoid (1.5) with (a, b, ¢) = (1.0,0.5,0.75). Numerical results are given in Table
3.1. The differences 7,, — 7%” are given for the specific value of ¢ = 2.25, along with the
ratios of successive differences and the estimated order of convergence (EOC). The results
are consistent with the conjectured order given in (2.32), as 2q = 4.5.

For the same integral (3.1), we give in Table 3.2 the estimated order of convergence as ¢
varies. In general the results are consistent with (2.10) and the conjectured convergence result
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TABLE 3.1
Numerical integrals for (3.2) over an ellipsoid with ¢ = 2.25

n Tn — T%n Ratio | EOC

4 1.22E +1

8 —2A4TE+0 | —4.98

16 —3.92F — 2 62.94 | 5.98
32 —1.84F —4 | 213.14 | 7.74
64 —8.36E—6 | 21.88 | 4.45
128 -3.70E -7 | 2259 | 4.50
256 —1.64E -8 22.62 | 4.50
512 | —7.23E - 10 22.63 | 4.50
1024 | —3.20F — 11 22.63 | 4.50

TABLE 3.2
Numerical integrals for (3.2) over an ellipsoid with varying ¢

q 1.00 | 1.25 | 1.50 | 1.75 2.00 2.25 2.50
EOC | 20 | 25 | 6.0 3.5 4.0 4.5 | large
q 2.75 1 3.00 | 3.25 | 3.50 | 3.75 | 4.00
EOC | 55 | 6.0 | 6.5 | large | 7.5 | = 8.0

of (2.32). But with the case of ¢ = 1.5, 2.5, and 3.5, the estimated order of convergence
is much better than that predicted by (2.10). A few additional comments concerning this
superconvergence are given in the concluding discussion of this paper.

3.2. Numerical results: Peanut surface. We approximate the integral
(3.3) / 01 (3 +2u+32) 46 = 371 453416333927.
S

As before we give results for a fixed value of ¢ = 2.25; see Table 3.3. Again the results are
consistent with (2.10) and the conjectured convergence result of (2.32). The qualitative results
for varying ¢ are the same as earlier in Table 3.2, including the much faster convergence for
the cases of ¢ = 1.5, 2.5, 3.5.

4. Treatment of a point singularity. We now consider integrals

@) 10) = [ 0Qse = [ #(M@) Im(@ asq

in which p is singular at a point P € S; cf. (1.2) and (1.3). As before in (1.7), we trans-
form to an integral over U. Since the subsequent transformation £ of (2.2)-(2.5) is based on
smoothing the integrand at the poles of U, we need to have the singularity in p correspond to
a pole of the sphere U. The original coordinate system of R? needs to be rotated to have the
north pole (or south pole) of U in the rotated system be the location of the singularity in the
integrand.

Let M(ﬁ) = P, P € U. We interpose an orthogonal Householder transformation of
R3,

(4.2) Q=HQ*, Q€U



ETNA

Kent State University
etna@mcs.kent.edu

144 Quadrature of singular integrands over surfaces

TABLE 3.3
Numerical integrals for (3.2) over a peanut with ¢ = 2.25

n Tn — T%n Ratio | EOC
4 5.443E + 2
8 —1.885E + 2 —2.89
16 | —8.322E+0 22.66 | 4.50
32 1.614F — 2 | —515.73
64 | —4.132E—-4 | -39.05
128 | —1.842FE -5 2244 | 4.49
256 | —8.143E -7 22.62 | 4.50
512 | —3.599E — 8 22.62 | 4.50
1024 | —1.591F -9 22.62 | 4.50

before the final mapping involving £. Choose a Householder matrix H = I — 2ww? such
that

0 0
4.3) #| 0 | =P, equivalently, HP=| 0
+1 +1

with the sign chosen later to minimize any loss of significance error. The requirement (4.3)
means that P will be mapped to either the North or South Pole of U, or conversely, a pole of
U is mapped to P.

Finding w is straightforward and inexpensive. In evaluating (4.2), use

Computing 2w’ Q* requires 4 multiplications and 2 additions; and computing @ requires a
further 3 multiplications and three subtractions (a total of 12 arithmetic operations for Q* —

Q)
In the integral (4.1), the transformation Q = HQ* yields

16) = [ p(MHQ") Tn(HQ") dSar,
U
since the Jacobian of the mapping is 1. Now use the mapping
Q'=£(Q), Qev
as before in (2.2)-(2.5), yielding
4.4 I(p) = L(Q))) JmHLQ))J: (Q) dS.
(@) ()= [ p (MPHL@D) Tn(H2(@) e (Q) dSg

Now apply the scheme of (2.7) as before in (2.7) of §2.
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4.1. Error analysis. When considering the earlier convergence results of (2.10)-(2.32),

the principal change is that the integrand p of the original integral (4.1) is now singular when
@ = P. To analyze what is happening, we assume that we are dealing with

(4.5)

L_/f(ﬂﬂﬂaén)hﬂﬂﬂénh(@)d
v P~ MHE@Q))|

This is an important case of interest when dealing with boundary integral equations. Note
that one of the poles of U corresponds to P under the rotation #, say H : (0,0,1) — P;

and then M (13) = P, making the denominator of the integrand zero when @ =(0,0,1).

As assumed earlier, the original smooth mapping M : U 2=} S can be considered as the

onto
restriction of a one-to-one mapping of an open neighborhood of U, call it U, onto an open
neighborhood of S:

M:Ugl—_tl)SEEM(UE).

In addition, this can be done in such a way that the Jacobian of the mapping is nonzero on
U. when M is considered as a three-dimensional mapping. We also assume that f(Q) is a
smooth differentiable function of @) on S..

We write

(4.6) M(HQ) = (z,y,2),

with z,y, and z functions of (£, 7, ¢) over U,. The functions z,y, and z depend on both M
and H, and thus z,y, and z will vary with P. Nonetheless, the functions z,y, and z will
remain differentiable with respect to £, 7, and ¢, as the differentiability depends on only that
of M. In addition,

m(oaoal)zpla
y(07071):P27
Z(0,0,l)ng

LEMMA 4.1. Let F' : R® — R be a continuously differentiable function on a connected
convex set C C R3. Letv,v, € C. Then

F(v) — F(vo) = (/OIVF(VOth(V—VO))dt) (v —vo).

For notation, VF' is a row vector and v — v is a column vector.

The proof is a straightforward use of the fundamental theorem of the calculus. Apply it
to F(vo+t(v—vp))for0<t<1.

With this lemma, we can write

1| 1 T2 I3 13
(4.7) (z,y,2) = P = / yioy2 ys |dt |-
0 Z1 R 23 (-1

We are interested in only the case that the point (z, y, z) is being evaluated at points (£, 7, ¢) €
U. Inthe matrix, z; = 8z/0&, x2 = dz/0n, x3 = Oz /0, and similarly for the functions y
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and z. The argument of each of these partial derivatives in the matrix is (¢t£,tn, 1 + ¢ ({ — 1)).
This formula requires that the line joining (z,y, z) and P be inside the open neighborhood
S. referenced above, or equivalently, the line joining (¢,7,¢) and (0,0,1) is inside of U..
This will be true if (x,y, ) and P are sufficiently close together, or equivalently, (£, 7, () ~
(0,0,1). Thus we want to deal only with points of U that are sufficiently close to (0,0, 1).
This is sufficient since the integrand in (4.5) is easily nonsingular and differentiable away
from @ = (0,0,1).

We apply (4.7) with
(€n,0) = (cos ¢sin? 0, sin ¢s.ir;q 8, cos ) _
vV cos? 6 + sin“? 6
Having (¢, n, ¢) approach (0, 0, 1) is equivalent to letting 6 tend to 0. For (&,7,¢) ~ (0,0,1),
the integral term in (4.7) is approximately

)

1 Ty T3
(4.8) J=| v y2 ys
122 3 1 (n.0)=(0,0,1))

the Jacobian matrix of the three-dimensional mapping M defined on U, and evaluated at
(0,0,1). The matrix J is nonsingular by our earlier assumption that the Jacobian of M is
nonzero over U.. Thus the matrix obtained from the integration in (4.7) is also nonsingular
with a determinant bounded away from zero, by continuity.

To introduce some intuition into the present discussion, we give concrete results for
the ellipsoidal surface of (1.5) with P = (0,0,¢). Recall that (x,y,2) = M (&,n,¢) =
(a&,bn, cC). Then

(@,9,2) — (0,0,0)] = /a? + 92 + (2 — )’

2
g . . q
_ acos¢sin? § n bsin ¢ sin? 0 vl cos@
Vcos? 8 + sin®? 0 v cos? 6 + sin®? 6 Vcos? 8 + sin®? 0
= 0.

Following some algebraic manipulation, we obtain

c2sin%? 6

5 2 )
[cos 6 + \/cos? 6 + sin®? 6}

ind
0= sin” 0 _ a? cos? ¢ + b2 sin” ¢ +
Vcos? 8 + sin?? 4
Thus the denominator in (4.5) acts like
4.9 =0 (sin?0)

around 6 = 0, with the function of proportionality nonzero and differentiable in (6, ¢).
For the general case, we write (4.7) in the form

N 1 _.731 T2 I3 f/Q
410)  (zy.x)-P=0 / yoyr s | dt e |,
Cla o2 o2 -1/

w

~ ind 1. 2¢q
(4.11) 0 sin? @ 1+ sin“? 60

. 2‘
m\ [cos0+ m}
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The vector that is the last term on the right side of (4.10) is of unit length. The right side of
(4.10) is the product of Q2 and a term closely approximated by

Jv,

with v a unit vector dependent on (6, ¢). As v varies in all possible ways, Jv will be bounded
away from zero because .J is nonsingular; and Jv will be a smooth differentiable function of
(8, ¢). We can use this and a continuity argument to show that the term

1] 1 X2 X3 f/Q
(4.12) / Y1 Y2 ys |dt n/Q
0
(

a on o -1/

is a continuous and differentiable function of (¢,7,{) € U in a neigborhood of (0,0,1);
and the same is true for (&, n,¢) away from (0,0, 1), since the denominator of (4.5) is then
nonzero and well-behaved. The main behaviour of interest for (z,y, z) — P is bound up in Q,
and it acts like the product of a smooth function and sin? §. The denominator in (4.5) again
behaves as in (4.9).

Summarizing,

(4.13) ‘P _ M(Hﬁ(@))‘ — T (6, ) sin? 6,

for some continuously differentiable function ¥ (6, ¢) that is bounded away from zero for
0<¢p<2mand0 <<,

Return to the discussion of the numerical scheme (2.7) applied to (4.5). The error analysis
of (2.7) mimics that given earlier in §2. The principal difference results from combining

4.13) with the Jacobian J (Q). We now have an integrand of the general form
3) with the Jacobian J Q). Wk h d of th | f

™ 2w
(4.14) / [sin 6]‘171/ ¥ (sin 0, cos 0, sin ¢, cos ¢) d¢ db,
0 0

in which ¥ is a smooth function. Proceeding as in §2, we have the following. The proof is
essentially the same as in Theorem 2.1.
THEOREM 4.2. Let ¢ > 1 be an integer, and introduce

_ q, q even,
P=1 ¢+1, godd.

In the integral (4.5), assume that f € LP(S). Assume that the surface S is similarly differen-
tiable, which is equivalent to assuming that the mapping M is suitably differentiable. Let 7,
be the approximation of (4.5) based on the schema of (2.7). Then

(4.15) I-T,=0(h?).

The rates of (4.15), and even better, are observed in practice. This is illustrated with the
numerical examples of the following section. Based on those examples and on other partial
theoretical results, we state the following conjecture that extends the above theorem.

CONJECTURE 4.3. Assume ¢ > 1. Under suitable assumptions on the function f, the
error in approximating (4.5) by (2.7) satisfies

(4.16) I—T,=0(h).

The methods of this section can also be applied to the analysis of the double layer integral
of (1.3), but we omit this analysis.
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TABLEA4.1
Numerical integrals for (5.1) with ¢ = 2.5

Surface S, Surface S
n Tn—Tin Ratio | EOC | Tn—Ty, Ratio | EOC
4 1.99E +1 1.38E + 2
8 —5.93F —1 | —33.65 —1.53E+1 -9.01
16 1.58E—1| -3.76 —1.01E+0 15.10

32 2.56F — 2 6.16 | 2.62 6.92E —2 | —14.63
64 4.53E -3 5.64 | 2.50 1.83E -2 3.79 1.92
128 8.01E — 4 5.66 | 2.50 3.24E -3 5.65 2.50
256 1.42F —4 5.66 | 2.50 5.72E — 4 5.66 2.50
512 2.50E -5 5.66 | 2.50 1.01E -4 5.66 2.50
1024 443FE -6 5.66 | 2.50 1.79E -5 5.66 2.50

TABLES.1
Numerical integrals for (5.1) with ¢ = 3

Surface Sy Surface S

n Tn — T%n Ratio T, — 'T%n Ratio

4 221K +1 1.48FE + 2

8 —246E+0 —8.96 —242F +1 —6.12
16 —T7.66FE — 2 32.2 —-233E+0 10.4
32 —1.00E -3 76.5 245E —2 | —95.12
64 7.07TE — 8 —14168 | —1.76E —5 | —1387
128 3.22E — 10 219 5.98E —9 —2948
256 | 5.04FE —12 63.9 7.53E — 12 794
512 5.68FE — 14 88.8 1.14F — 13 66.2
1024 0 0

5. Numerical examples: singular integrand. We begin with numerical results for

(5.1) T /eo'l(mmz)ds
' “Js P-qQ 7Y

with Q = (z,y, z). For the ellipsoidal surface Sy, we use the surface parameters (a, b, c) =
(1,2, 3); and for the peanut surface S5, we use the surface parameters

(a,b,c,d e, f,9) =(1,1.5,2,1,0.7,3,0.3).
Letting I} denote the integral over Sy, we have

I, = 38.254918969803924,
I, =143.25583436283551.

The point P was chosen to correspond to the spherical coordinates (0, ¢) = (w/4,w/4) for
both surfaces.

In Tables 4.1 and 5.1, we give results for ¢ = 2.5 and ¢ = 3. In Table 5.2 we give results
for varying ¢. Note that the results agree with (4.15) and the conjectured convergence order of
(4.16) except for the case of ¢ = 3. For this latter case, the theoretical result of (4.16) predicts
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TABLES.2
Estimated order of convergence for the numerical integration (5.1) with varying ¢

q 1.5 20|25 3.0 3.5 | 4.0
Surface S; | 1.5 | 2.0 | 2.5 | large | 3.5 | 4.0
Surface S, | 1.5 | 2.0 | 2.5 | large | 3.5 | 4.0

I-7,=0 (h4). Empirically for ¢ = 3, based on both Table 5.1 and other examples, we
estimate that I — 7,, = O (h®).

CONCLUDING DISCUSSION. The proofs of the conjectures in (2.32) and (4.16) will
probably depend on some extension of the asymptotic results of Lyness and Ninham [8].
Also see the recent work of Sidi [10].

As noted in the numerical examples of earlier sections, there are values of ¢ for which the
convergence of 7, to I is extremely rapid, much more so than is predicted by the theoretical
convergence results for general ¢. Consider the special case of

(5.2) 1(f) = /U £(Q)dSa,

with f nonsingular and 2¢ = 3. Using the constructions of the derivatives of F'(6) and G(6)
in the proof of Theorem 2.1, it can be shown that

k
L FOGE =0, k=13 =0

Thus, we would like to apply the Euler-MacLaurin expansion of (2.9) to conclude that I —
Tn =0 (h6), which would agree for this case with the observed rate in the examples of §3.
Unfortunately, we need to also show that

dG

des
something we have not been able to accomplish to date. Thus, we leave it as a conjecture that
superconvergence takes place for (5.2) with f a sufficiently smooth function and 2¢ an odd
integer.

Recall the assumptions on the mapping M given in §1 following (1.6). Smooth map-
pings M : U —> S defined on surfaces can be extended to meet the earlier assumptions; for
example, see Gunter [7, Chap. 1, §3].

There are probably other transformations that can be used to replace (2.2), although

ours seems both intuitive and simple to implement. We have implemented our scheme using
Matlab and will gladly share the codes with others.

[F(0)G(0)] € L(0,7),

APPENDI X. Defining surface normals and Jacobian for a general surface. The mapping
M:U 1;7} S isgiven by (&¢,7,() — (z,y, z). Using spherical coordinates,
onto

T = m(£7 777 C)J
y=y(&n, ),
z=2z(£,n,0).
For derivatives, we use the shorthand notation
_02(&n. Q) 0x(m,Q) _ 92(6n, Q)

6§ ) 2 6"7 ) 3 6C )
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with similar notation for y and z.

with Q = (&,m, ). For the normal at (z,y, z) = M (€,7, ),
(

[1]

[2]
[3]

[4]
[5]

(6]

[7]
(8]

[9]

For the surface Jacobian used in the change of variables expression in (1.7),

2 2 2
a2 E n ¢ X1 T2 T3 T1 Ty I3
[JM(Q)] =y y2 y3| +| & n (¢ + Y1 Y2 Ys |

21 22 23 21 2y 23 £ 7 ¢

(Y122 — y221) C + (ysz1 —y123) )+ (y223 — Yy322) € -|
G = | (2112 — 22m1) C + (2301 — 2123) ) + (223 — 2322) € |,
(1y2 — 22y1) ¢ + (2331 — 21Y3) N + (T2y3 — T3Yy2) € J
N &
G|
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