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Abstract

In this article we study the properties of the hyperinterpolation opera-
tor on the unit disk D in R2. We show how the hyperinterpolation can be
used in connection with the Kumar-Sloan method to approximate the so-
lution of a nonlinear Poisson equation on the unit disk (discrete Galerkin
method). A bound for the norm of the hyperinterpolation operator in the
space C(D) is derived. Our results prove the convergence of the discrete
Galerkin method in the maximum norm if the solution of the Poisson
equation is in the class C1;�(D), � > 0. Finally we present numerical
examples which show that the discrete Galerkin method converges faster
than O(n�k), for every k 2 N, if the solution of the nonlinear Poisson
equation in is C1(D).

Keywords: Hyperinterpolation operator, discrete Galerkin method, projector
norm, nonlinear Poisson equation

AMS subject classi�cation: 65R20, 65N35, 35J60, 41A55.

1 Introduction

The most common approach to solving numerically integral and partial di¤eren-
tial equations over a planar region is to use piecewise polynomial approximations
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of the solution. An approach that has been used much less is to use polynomial
approximations of the solution. We used this recently in [6] to solve the nonlin-
ear Poisson equation �u = f(�; u) over the closed unit disk D � R2 [By a simple
change of variables this extends a wide variety of other planar regions; e.g. see
[5] for a conformal transformation of the ellipse onto the disk.] Methods based
on polynomial approximations are often more rapidly convergent, and usually
they lead to solving linear or nonlinear systems that are of much smaller order
than numerical methods based on piecewise polynomial approximations.
Numerical methods for approximating di¤erential or integral equations are

usually of collocation or Galerkin type. We have been considering methods of
Galerkin type because collocation methods require results on multivariate poly-
nomial interpolation theory, and this theory is still being developed (e.g. see
[20]). With Galerkin methods, there are many integrals to be evaluated numer-
ically. In attempting to minimize the order of the quadrature rule being used,
one is led to the idea of hyperinterpolation, a concept and term introduced by
Ian Sloan in [15]. In this paper we investigate hyperinterpolation in connection
with Galerkin�s method over the unit disk.
The Galerkin method with polynomial approximations makes use of the

orthogonal projection from L2 (D) onto the subspace of polynomials of degree �
n. The hyperinterpolation operator is based on approximating the integrations
that appear in the formula for the orthogonal projection operator. In §2 we
introduce the hyperinterpolation operator and discuss bounding its norm as an
operator on C (D). The main result of this paper is given at the conclusion of
the section, and its proof is given as a series of lemmata in §§3,4.
The bound which we derive for the hyperinterpolation operator implies that

the resulting discrete Galerkin method is convergent in the maximum norm if the
solution of the equation has a smoothness of C1;�(D), � > 0. In previous articles,
see [6], we assumed that certain integrals are known or can be approximated
with a su¢ ciently accurate integration rule. Our analysis here shows that the
quadrature rules used in the construction of the hyperinterpolation operator
are su¢ cient to guarantee the convergence and that the resulting convergence
rate is at most O(log(n)) slower than the optimal rate which we can expect.
In the �nal Section we apply the method to nonlinear Poisson equations where
the solution is in C1(D). Here we expect that the convergence is faster than
O(n�k) for every k 2 N. Our numerical results con�rm this.

2 The hyperinterpolation operator on the disk

We consider the disk D := f(x1; x2) 2 R2 j x21 + x22 � 1g and the space L2(D)
with the scalar product

(f; g) :=
1

�

Z
D

f(x)g(x) dx (1)

=
1

�

Z 1

0

Z 2�

0

f(r; �)g(r; �)r d�dr (2)
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We always identify the two representations of a function f on D: f(x) = f(r; �).
By �n we denote the space of all polynomials in two variables of degree n or
less

�n :=

8<:
nX
j=0

jX
k=0

aj;kx
k
1x

j�k
2

������ aj;k 2 R
9=;

and the dimension of �n is
�
n+2
2

�
:

Let f	j;kgj=0:::n;k=0:::j be an orthonormal basis for �n. The orthogonal
projection of L2 (D) onto �n is given by

(Pnf)(x) :=
nX
j=0

jX
k=0

(f;	j;k)	j;k(x)

The property
kPnkL2(D) 7!L2(D) = 1

is well known; and Xu proved in [19] the important result

kPnkC(D) 7!C(D) � n; (3)

here A(n) � n, means that there are constants c1 > 0 and c2 > 0 such that
c1n � A(n) � c2n
To approximate the projection Pn we can replace the scalar product by a

�nite sum

(f; g)d :=
1

�

nX
l=0

2nX
m=0

f

�
rl;

2�m

2n+ 1

�
g

�
rl;

2�m

2n+ 1

�
!l

2�

2n+ 1
rl

=
nX
l=0

2nX
m=0

f

�
rl;

2�m

2n+ 1

�
| {z }

=:�l;m

g

�
rl;

2�m

2n+ 1

�
!l

2

2n+ 1
rl| {z }

=:wm;l

(4)

we use the trapezoidal rule for the azimuthal direction and a Gaussian quadra-
ture rule for the radial direction. This quadrature is exact for all polynomials
f; g 2 �n. Here the numbers !l are the weights of Gauss-Legendre quadrature
on [0; 1]: Z 1

0

p(x)dx =
nX
l=0

p(rl)!l;

for all single-variable polynomials p(x) with deg (p) � 2n+1. [Another possible
choice would be the Gauss quadrature on [0; 1] with measure rdr; the term rl
in formula (4) would then disappear.] The discrete semi-de�nite scalar product
(�; �)d depends on n but we do not indicate explicitly this dependency.
With the help of the discrete scalar product we can now de�ne an approxima-

tion to the orthogonal projection Pnf when f is restricted to being continuous
over D:

(Lnf)(x) :=
nX
j=0

jX
k=0

(f;	j;k)d	j;k(x)
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The operator Ln is the hyperinterpolation operator of Sloan and Womersley [16];
and it can also be considered as a discrete orthogonal projection operator, as in
[4]. Methods using this approximating operator are sometimes called discrete
Galerkin methods.

2.1 Bounds on the projection error

When using the Galerkin method or the discrete Galerkin method for solving
integral equations, the rate of convergence is generally related to the error in
the orthogonal projection. For a discussion of a general framework for analyzing
Galerkin methods and discrete Galerkin methods for solving integral equations,
see [3, Chap. 3]. The error analysis often leads to a formula

kf � fnk � ckf �Qnfk (5)

that is shown to hold for all su¢ ciently large n. We consider both the cases
Qn = Pn orQn = Ln. If the analysis is being done within L2 (D), with the norm
being k � kL2 , then we know Pnf ! f as n ! 1 for any f 2 L2 (D). However
when using Ln we must work in C(D), and we also are often interested in doing
so for Pn; the function space norm is then k � k1. In both of the cases C(D)
and L2(D), we are interested in examining the rate of convergence Qnf to f as
it is a¤ected by the smoothness of the function f .
To examine this question, we can use results on best polynomial approxi-

mations, and for this, we use results from Ragozin [14, p. 164] as summarized
below. Assume f 2 Ck(D) with k � 0 an integer. For the norm on Ck(D), we
use the standard de�nition

kfkCk =
X
i+j�k

 @i+jf@xi@yj


1

In addition, de�ne various moduli of continuity by

! (f ;h) = sup fjf (x1; y1)� f (x2; y2)j : k (x1; y1)� (x2; y2) k � hg

!k (f ;h) =
X
i+j=k

!

�
@i+jf

@xi@yj
;h

�
; k � 1

Then there exists a sequence of polynomials pn of degree� n such that

kf � pnk1 � Bk
nk

�
kfkCk

n
+ !k

�
f ;
1

n

��
; d � 1 (6)

where each constant Bk depends only on k � 0.
To bound kf �Qnfk, note that with both choices for Qn, we have

Qnp = p 8p 2 �n

Thus,
f �Qnf = (f � pn)�Qn (f � pn)
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kf �Qnfk � (1 + kQnk) kf � pnk (7)

When the function space is L2 (D) and Qn = Pn, we know kPnkL2!L2 = 1 and
thus

kf � PnfkL2 � 2kf � pnkL2
� 2�kf � pnk1 (8)

With the space C (D) and either choice for Qn, we have

kf �Qnfk1 � (1 + kQnkC!C) kf � pnk1 (9)

With Qn = Pn, we know that kPnkC!C = On!1(n) (cf. (3)). When this is
combined with (6), we lose one power of n in the rate of uniform convergence of
Pnf to f . We need k > 1 to insure uniform convergence; although using other
results from [14] this can be weakened to requiring f to have �rst derivatives
that are Hölder continuous with some exponent � > 0.
If Qn = Ln, we need to know kLnkC!C in order to bound kf � Lnfk1

Estimating this norm is the focus of the present paper.

2.2 The reproducing kernel for �n
To obtain another useful formula for Lnf , we need a result from Xu in [19]
where he derived formulas for the reproducing kernel Gn for �n. We specialize
his formulas to our case, obtaining the following:

Gn(x; y) =
nX
j=0

jX
k=0

	j;k(x)	j;k(y)

=

Z �

0

h
C(2)n

�
x � y +

p
1� kxk2

p
1� kyk2 cos( )

�
+C

(2)
n�1

�
x � y +

p
1� kxk2

p
1� kyk2 cos( )

�i
d 

=
2�
�
5
2

�
�(n+ 3)

�(4)�
�
n+ 3

2

� (10)

�
Z �

0

P
( 32 ;

1
2 )

n

�
x � y +

p
1� kxk2

p
1� kyk2 cos( )

�
d (11)

Here P (�;�)n denotes a standard Jacobi polynomial of degree n (cf. [1, p. 774],
[2, §6.3], [17, Chap. 4]); and we remark that the multiplying constant in (10)
satis�es

2�
�
5
2

�
�(n+ 3)

�(4)�
�
n+ 3

2

� � n
3
2 : (12)

Using Gn(x; y), we have the following reproducing kernel property over �n:Z
D

Gn(x; y)f(x) dx = f(y); y 2 D; for all f 2 �n (13)
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Now we can proceed as in Sloan and Womersley [16, (4.13)] and derive a
representation for Ln with the help of Gn:

(Lnf)(x) =
nX
j=0

jX
k=0

 
nX
l=0

2nX
m=0

wl;mf(�l;m)	j;k(�l;m)

!
	j;k(x)

=
nX
l=0

2nX
m=0

wl;mf(�l;m)

0@ nX
j=0

jX
k=0

	j;k(�l;m)	j;k(x)

1A
=

nX
l=0

2nX
m=0

wl;mf(�l;m)Gn(�l;m; x) (14)

It is straightforward to show that

kLnkC(D) 7!C(D) = max
x2D

nX
l=0

2nX
m=0

wl;m
��Gn(�l;m; x)��

Because the kernel function Gn is continuous, we know that there is a �0 =
r̂(cos(�0); sin(�0)) 2 D (we omit the dependency on n) such that

kLnkC(D) 7!C(D)

=
nX
l=0

2nX
m=0

wl;m
��Gn(�l;m; �0)��

�
2�
�
5
2

�
�(n+ 3)

�(4)�
�
n+ 5

2

� nX
l=0

2nX
m=0

wl;m� (15)Z �

0

����P ( 32 ; 12 )n

�
rlr̂ cos(�0 �

2m�

2n+ 1
) +

p
1� r̂2

q
1� r2l cos( )

����� d 
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2.3 Bounding the hyperinterpolation operator

We can obtain a simple bound for kLnkC(D) 7!C(D) by modifying an argument
given in [16, Thm 5.5.2]. We begin by using the Cauchy-Schwartz inequality

kLnkC(D) 7!C(D) =
nX
l=0

2nX
m=0

wl;m
��Gn(�l;m; �0)��

=
nX
l=0

2nX
m=0

p
wl;m

p
wl;m

��Gn(�l;m; �0)��
�
 

nX
l=0

2nX
m=0

�p
wl;m

�2! 1
2
 

nX
l=0

2nX
m=0

�p
wl;m

��Gn(�l;m; �0)���2
! 1

2

=

 
nX
l=0

2nX
m=0

wl;m
�
Gn(�l;m; �0)

�2! 1
2

=

�Z
D

[Gn(x; �0)]
2
dx

� 1
2

The last equality follows from the exactness of the quadrature formula for poly-
nomials of degree � 2n and from [Gn(x; �0)]

2 being a polynomial of degree 2n
in the integration variable x. Using the reproducing kernel property (13) of Gn
with f(x) = Gn(x; �0), the integral term simpli�es toZ

D

[Gn(x; �0)]
2
dx = Gn(�0; �0);

and thus,
kLnkC(D) 7!C(D) �

p
�Gn(�0; �0) (16)

Next we use the following bound on Jacobi polynomials, taken from [1,
22.14.1]: ���P (�;�)n (t)

��� � �n+ q
n

�
� nq; q = max (�; �) ; �1 � t � 1 (17)

provided q � � 1
2 and �; � > �1. In the integral of (15),����Z �

0

P
( 32 ;

1
2 )

n

�
x � y +

p
1� kxk2

p
1� kyk2 cos( )

�
d 

���� � �

�
n+ 3

2

n

�
; x; y 2 B

When combined with (12) and ( 17), we have

jGn(x; y)j = On!1
�
n3
�

and then from (16),

kLnkC(D) 7!C(D) � On!1

�
n
3
2

�
(18)

Can this result be improved to the growth rate given in (3) for kPnkC(D) 7!C(D)?
The main result of this paper shows something quite close to this.
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Theorem 1 The hyperinterpolation operator Ln satis�es

kLnkC(D) 7!C(D) = On!1(n ln(n)):

The proof of this result is given as a series of lemmata that are given in the
following two sections of the paper. Before taking up the proof, we note the
following.

1. The proof shows that not only our special choice of trapezoidal and Gaussian
rule for the hyperinterpolation operator leads to the above norm estimate,
but that every choice of a quadrature rule that is a convergent Riemann
sum with maximal stepwidth proportional to 1

n will lead to the above es-
timate. Even so, we still need a quadrature rule in (4) which calculates
the inner product in (1) exactly for functions in �n in order to have Ln
be a projection operator from C(D) onto �n.

2. The proof of Theorem 1 includes also a proof of kPnkC(D) 7!C(D) = On!1(n).
The proof given here is independent of the proof by Xu in [18].

3 Bounds for the angular quadrature

The proof of Theorem 1 is shown through a series of lemmata. We begin by
looking at the angular quadrature portion of the formula (15),

2�

2n+ 1

2nX
m=0

Z �

0

����P ( 32 ; 12 )n

�
rlr̂ cos(�0 �

2m�

2n+ 1
) +

p
1� r̂2

q
1� r2l cos( )

����� d 
(19)

To bound this sum, we begin with a result from Xu [19, Lemma 3.2].

Lemma 2 For �; � > �1, t 2 [0; 1],���P (�;�)n (t)
��� � c0p

n
(1 +

1

n2
� t)�

�+1
2

2 ;

where c0 does not depend on t or n.

Because of
���P (�;�)n (�t)

��� = ���P (�;�)n (t)
��� we get a similar estimate for t 2 [�1; 0],

namely ���P (�;�)n (t)
��� � c0p

n
(1 +

1

n2
+ t)�

�+1
2

2

Let � = 3
2 and � =

1
2 , add the two bounds to obtain the overall bound����P ( 32 ; 12 )n (t)

���� � c0p
n

0@ 1

1 + 1
n2 � t

+
1q

1 + 1
n2 + t

1A ; �1 � t � 1 (20)
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For a general a > 0, we have
1p
a
� c

a

provided c �
p
a. Using this with the �nal fraction in (20), we �nd that we

need c �
p
3 when allowing �1 � t � 1 and n � 1. Thus����P ( 32 ; 12 )n (t)

���� � p
3c0p
n

�
1

1 + 1
n2 � t

+
1

1 + 1
n2 + t

�
(21)

Using the estimate (21) in (15) and the de�nition of wm;l we get

kLnkC(D) 7!C(D) � c1(n)
nP
l=0

wlrl

�
2nP
m=0

2�

2n+ 1

R �
0

�
1

1 + 1
n2 � t(n; r̂; �0; rl;m;  )

+
1

1 + 1
n2 + t(n; r̂; �0; rl;m;  )

�
d 

(22)

where we have introduced

t(n; r̂; �0; r;m;  ) := r̂r cos

�
�0 �

2m�

2n+ 1

�
+
p
1� r̂2

p
1� r2 cos( ) (23)

and

c1(n) :=
8c0�

�
5
2

�
�(n+ 3)

�(4)�
�
n+ 5

2

�p
n
= On!1(n) (24)

To estimate the trapezoidal rule in the square brackets of (22), we start by
calculating the integral. For this, use [10, 2.553],Z �

0

1

a+ b cos( )
d =

�p
a2 � b2

; jaj > jbj : (25)

Apply this to (22) with

a = 1 +
1

n2
� r̂rl cos

�
�0 �

2m�

2n+ 1

�
;

b = �
p
1� r̂2

q
1� r2l

Note that

a2 � b2 � (1 + 1

n2
� r̂rl)2 � (1� r̂2)(1� r2l )

= (r̂ � rl)2 +
1

n4
+
2

n2
(1� r̂rl)

� 1

n4
; r̂; rl 2 [0; 1]:
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Introduce the notation

H�
1 (n; r̂; r; �)

:=
�q

(r̂2 + r2l � r̂2r2l + 1
n4 +

2
n2 )� 2r̂rl(1 +

1
n2 ) cos(�) + r̂

2r2l cos(�)
2
(26)

For (22), introduce the notation

Tn(r̂; �0; r) :=
2nX
m=0

2�

2n+ 1
� (27)Z �

0

�
1

1 + 1
n2 � t(n; r̂; �0; rl;m;  )

+
1

1 + 1
n2 + t(n; r̂; �0; rl;m;  )

�
d 

Applying (25),

Tn(r̂; �0; r)

=
2nX
m=0

2�

2n+ 1

�
H�
1 (n; r̂; r; �0 �

2m�

2n+ 1
) +H+

1 (n; r̂; r; �0 �
2m�

2n+ 1
)

�
Introduce

I1(n; r̂; r) :=

Z 2�

0

�
H+
1 (n; r̂; r; �) +H

�
1 (n; r̂; r; �)

�
d�; (28)

Then (27) is nothing more than a trapezoidal rule, shifted by �0; for the ap-
proximation of I1(n; r̂; rl). To further simplify our analysis, note that the
integrand in the de�nition of I1 has period �. Also, the simple identity
cos (� � �) = � cos (�) can be used to show that the integral over [0; �] of
H+
1 equals that of H�

1 . Consequently,

I1(n; r̂; r) = 4

Z �

0

H�
1 (n; r̂; r; �) d�

To estimate Tn(r̂; �0; r) we need to �nd estimates for the integral I1 and for the
quadrature error of the shifted trapezoidal rule. We use the following result. A
proof for the case of the trapezoidal rule is given in the Brass [7], but it works
the same for every Riemann sum.

Lemma 3 Let f : [a; b] 7! R be a continuous function with bounded variation
and Qn a quadrature rule which is also a Riemann sum:

Qn(f) :=
nX
i=0

f(�
[n]
i )(x

[n]
i � x[n]i�1);

a = x
[n]
0 < x

[n]
1 < : : : < x

[n]
n = b, �[n]i 2 [x[n]i�1; x

[n]
i ]. Then�����

Z b

a

f(x)dx�Qn(f)
����� � Var(f) n

max
i=1

(x
[n]
i � x[n]i�1);

10



where Var(f) is the variation of f over [a; b]. This implies

jQn(f)j �
�����
Z b

a

f(x)dx

�����+Var(f) n
max
i=1

(x
[n]
i � x[n]i�1):

Because the shifted trapezoidal rule is a Riemann sum we can use Lemma 3
to estimate Tn(r̂; �0; r).

Lemma 4 For the sum Tn, de�ned in (27), we get

Tn(r̂; �0; r) �
8�p

A(n; r̂; r)
K

0@s4r̂rp1� r̂2p1� r2
A(n; r̂; r)

1A
+
2�2

n

1q
(r̂ � r)2 + 1

n4 +
2
n2 (1� r̂r)

; (29)

A(n; r̂; r) := r̂2 + r2 � 2r̂2r2 + 1

n4
+
2

n2
+ 2r̂r

p
1� r̂2

p
1� r2

Remark 5 Here K denotes the complete elliptic integral of the �rst kind, see
[1, §17.3], [2, p. 132], [8].

Proof. By Lemma 3 we have to calculate
R �
0
H�
1 (n; r̂; r; �)d� and estimate

Var(H�
1 (n; r̂; r; �)). We start with the integral and introduce the abbreviations

� =
1

n4
+
2

n2

a = r̂2 + r2 � r̂2r2 + � (30)

b = �2r̂r(1 + 1

n2
)

c = r̂2r2

Now we can writeZ �

0

H�
1 (n; r̂; r; �)d� =

Z �

0

�p
a+ b cos(�) + c cos(�)2

d�

= 2�

Z 1

0

1r
a+ b 1��

2

1+�2
+ c

�
1��2
1+�2

�2 d�

1 + �2

= 2�

Z 1

0

1p
c1 + b1�

2 + a1�
4
d�

Here we have used the substitution

� = 2arctan(�)
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and have introduced the abbreviations

a1 = a� b+ c

= (r̂ + r)2 +
1

n4
+
2

n2
(1 + r̂r)

� �

b1 = 2(a� c)
= 2(r̂2 + r2 � 2r̂2r2 + �)
� �

c1 = a+ b+ c

= (r̂ � r)2 + 2

n2
(1� r̂r) + 1

n4

� 1

n4

Finally we use the substitution
 = �2

and obtain the following formula for I1(n; r̂; r),

I1(n; r̂; r) = 4�

Z 1

0

1
p

p
c1 + b1 + a12

d

The above way to transform the integral is the common way to transform these
kind of integrals in order to bring them into a standard form connected to elliptic
integrals; see [10, 2.580]. Finally we calculate the zeros 0 > 1 > 2 of

0 = a1
2 + b1 + c1

and get

1 =
�(r̂2 + r2 � 2r̂2r2 + �) + 2r̂r

p
1� r̂2

p
1� r2

(r̂ + r)2 + 1
n4 +

2
n2 (1 + r̂r)

2 =
�(r̂2 + r2 � 2r̂2r2 + �)� 2r̂r

p
1� r̂2

p
1� r2

(r̂ + r)2 + 1
n4 +

2
n2 (1 + r̂r)

This leads us to

I1(n; r̂; r) =
4�
p
a1

Z 1

0

1p
( � 0)( � 1)( � 2)

d

=
4�
p
a1

2p�2
K

�r
1 � 2
�2

�
with the complete elliptic integral of �rst kind K, see [10, 3.131.8]. Plugging in
the expressions for a1, 1, and 2 gives us the �rst term in our estimate for the
trapezoidal rule in (29).

12



Finally we calculate the total variation of the function H�
1 (n; r̂; r; �) over

[0; 2�]. We de�ne the function

f(�) := �2r̂r(1 + 1

n2
) cos(�) + r̂2r2 cos(�)2

Then f 0(�) = 0 for � 2 f0; �; 2�g, and checking these numbers for H�
1 we �nd

that H�
1 (n; r̂; r; 0) = H�

1 (n; r̂; r; 2�) is the maximum and H�
1 (n; r̂; r; �) is the

minimum. In between the function is monotone, so the variation is bounded
by

Var(H�
1 (n; r̂; r; �)) = 2(H�

1 (n; r̂; r; 0)�H�
1 (n; r̂; r; �))

� 2H�
1 (n; r̂; r; 0)

Together with the stepwidth of 2�
2n+1 of the trapezoidal rule, Lemma (3) gives

the second term in formula (29).

4 Bounds for the radial quadrature

Combining (22), Lemma 4, and the notation

J1(n; r̂; r) :=
8�p

A(n; r̂; r)
K

0@s4r̂rp1� r̂2p1� r2
A(n; r̂; r)

1A (31)

A(n; r̂; r) := r̂2 + r2 � 2r̂2r2 + 1

n4
+
2

n2
+ 2r̂r

p
1� r̂2

p
1� r2 (32)

J2(n; r̂; r) := 2�
2 1q

(r̂ � r)2 + 1
n4 +

2
n2 (1� r̂r)

(33)

we can estimate

kLnkC(D) 7!C(D) � c1(n)
nX
l=0

wlrl

�
J1(n; r̂; rl) +

1

n
J2(n; r̂; rl)

�
= c1(n)Q

G
n [r(J1(n; r̂; r) +

1

n
J2(n; r̂; r))] (34)

where QGn denotes the n+1 point Gaussian quadrature rule on [0; 1]. For these
quadrature rules we use the following result.

Theorem 6 The Gaussian quadrature rules are Riemann sums, and if we de-
note by a < x

[n]
0 < x

[n]
1 < : : : < x

[n]
n < b the knots of the Gaussian quadrature

rule on [a; b], then
n
max
i=1

(x
[n]
i � x[n]i+1) � c2

b� a
n

where c2 > 0 is independent of n.

13



Proof. See for example [7, Thms. 53 and 85], or [17, 3.41.1 and 6.21.3]

Theorem 6 allows us to use Lemma 3 to estimate the right hand side of
equation (33), in a similar way to the proof of Lemma 4. We prove the required
estimates in the next four lemmata.

Lemma 7 For the function J1, de�ned in formula (31), we getZ 1

0

rJ1(n; r̂; r) dr � c3; (35)

where c3 does not depend on n or r̂.

Proof. First we de�ne the angle  2 [0; �2 ] by r̂ = cos( ) and then we
substitute r = cos(�) in the integral in (35). We remark

A(n; cos( ); cos(�)) = �+ sin(�+  )2:

See (32) for the de�nition of A and (30) for the de�nition of �. Using these
results and the substitution we getZ 1

0

rJ1(n; cos( ); r) dr = 8�

Z �
2

0

cos(�) sin(�)p
�+ sin( + �)2

K

 s
sin(2 ) sin(2�)

�+ sin( + �)2

!
d�

For �;  2 [0; �2 ] we can estimate

cos(�) sin(�)p
�+ sin( + �)2

� cos(�) sin(�)

sin(�+  )

=
cos(�) sin(�)

sin( ) cos(�) + cos( ) sin(�)

=
1

sin( )
sin(�) +

cos( )
cos(�)

� 1

sin( ) + cos( )

� 1

and thereforeZ 1

0

rJ1(n; cos( ); r) dr � 8�
Z �

2

0

K

 s
sin(2 ) sin(2�)

�+ sin( + �)2

!
d�

To estimate the integral we �rst rewrite the complete elliptic integral as a
hypergeometric function (see [2, 3.2.3]),

K(z) =
�

2
F2;1

�
1
2 ;

1
2 ; 1; z

2
�
:

14



Furthermore the function F2;1( 12 ;
1
2 ; 1; �) is monotone increasing on [0; 1] and ([2,

Th. 2.1.3])

lim
z!1�

F2;1
�
1
2 ;

1
2 ; 1; z

�
� ln(1� z) =

1

�
:

This implies that there is a constant c4 such that

F2;1
�
1
2 ;

1
2 ; 1; z

�
� c4(1� ln(1� z)); 0 � z < 1: (36)

Using this estimate and the fact that

F2;1

�
1
2 ;

1
2 ; 1;

sin(2 ) sin(2�)

�+ sin( + �)2

�
� F2;1

�
1
2 ;

1
2 ; 1;

sin(2 ) sin(2�)

sin( + �)2

�
shows us that we need only bound

�
Z �

2

0

ln

�
1� sin(2 ) sin(2�)

sin( + �)2

�
d�

independently of  to �nish the proof of the lemma. We de�ne

f( ; �) :=
sin(2 ) sin(2�)

sin( + �)2
; 0 �  ; � � �

2

Then

f( ; ) = 1;

f( ; 0) = f
�
 ;
�

2

�
= 0:

We derive some properties of f :

@f( ; �)

@�
=

2 sin(2 )

sin3( + �)
sin( � �)

= 0 ,  = �

so all functions f( ; �) are increasing between 0 and  and then decreasing
between  and �

2 . Furthermore

f
��
2
�  ; �

2
� �

�
= f( ; �);

so we only have to consider  2 [0; �4 ]. For " 2 [0;  ] we get

f( ; � ") = sin(2 ) sin(2 � 2")
sin(2 � ")2

and

@f( ; � ")
@ 

=
2 sin(")

sin(2 � ")3 [sin(2 )� sin(2 � 2")]

� 0

15



This proves

f( ; � ") � f
��
4
;
�

4
� "
�

= 1� tan(")2; 0 � " �  

and therefore

f( ; �) � 1� tan( � �)2; 0 � � �  � �

4
(37)

Now we study " 2 [0; �4 ]. Noting

f( ; + ") =
sin(2 ) sin(2 + 2")

sin(2 + ")2

we get

@f( ; + ")

@ 
=

2 sin(")

sin(2 + ")3
(sin(2 + 2")� sin(2 ))

= 0 ,  =
�

4
� "

2

Therefore

f( ; + ") � f
��
4
� "

2
;
�

4
+
"

2

�
= cos(")2

and this proves the estimate

f( ; �) � cos(��  )2;  � � �  +
�

4
(38)

But f( ; �) is monotone decreasing for � >  , so we get also

f( ; �) � f
�
 ; +

�

4

�
= cos

��
4

�2
=
1

2
;  +

�

4
� � � �

2
(39)
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Using the estimates (37)�(39) we get

�
Z �

2

0

ln (1� f( ; �)) d� � �
Z  

0

ln(tan( � �)2) d�

�
Z  +�

4

 

ln(1� cos(��  )2) d��
Z �

2

 +�
4

ln(
1

2
) d�

� �2
Z  

0

ln(tan(�)) d�

� 2
Z �

4

0

ln(sin(�)) d� +

Z �
2

 +�
4

ln(2) d�

� �2
Z �

4

0

ln(tan(�)) d�

� 2
Z �

4

0

ln(sin(�)) d� +
� ln(2)

4

<1

which is a bound for the integral, independent of  . This proves the lemma.

Lemma 8 The function J2 de�ned by (33) satis�esZ 1

0

rJ2(n; r̂; r) dr � c5 ln(n); (40)

where c5 does not depend on n or r̂.

Proof. First rewrite the integral in (40),Z 1

0

rJ2(n; r̂; r) dr = 2�
2

Z 1

0

rq
(1� r̂2)�+

�
r � r̂

�
1 + 1

n2

��2 dr
= 2�2

Z 1�r̂(1+1=n2)

�r̂(1+1=n2)

r̂(1 + 1=n2) + up
(1� r̂2)�+ u2

du

= 2�2r̂(1 + 1=n2)

Z 1�r̂(1+1=n2)

�r̂(1+1=n2)

1p
(1� r̂2)�+ u2

du

+ 2�2
Z 1�r̂(1+1=n2)

�r̂(1+1=n2)

up
(1� r̂2)�+ u2

du

=: K1(n; r̂) +K2(n; r̂)

17



where we have used the substitution u = r � r̂(1 + 1=n2) and the de�nition of
� in (30). Note that K2(n; r̂) is bounded

K2(n; r̂) = 2�
2=
p
(1� r̂2)�+ u2

���1�r̂(1+1=n2)
�r̂(1+1=n2)

= 2�2
hp
(1� r̂2)�+ (1� r̂(1 + 1=n2))2 �

p
(1� r̂2)�+ (�r̂(1 + 1=n2))2

i
� 2

p
2�2

if we assume n � 2 which implies � < 1.
Before we start to estimate K1(n; r̂) we calculate K1(n; 1),

K1(n; 1) = 2�
2

�
1 +

1

n2

�Z �1=n2

�(1+1=n2)

1

juj du

= 2�2
�
1 +

1

n2

�
ln(1 + n2)

= On!1(ln(n))

Thus we cannot expect to �nd a �nite bound for the function K1. To estimate
K1 we consider three cases:

1. 0 � r̂ � 1
2

1
1+1=n2 . In this case the upper limit of the integral for K1 is

larger than zero; and in particular, it is larger than r̂(1 + 1=n2).

2. 1
2

1
1+1=n2 � r̂ � 1

1+1=n2 . This implies that the upper limit in the integral

for K1 is still positive. The upper limit is also smaller than r̂(1 + 1=n2).

3. 1
1+1=n2 < r̂ < 1. Now zero is no longer in the interval of integration for
K1.

In each case we are able to �nd a logarithmic bound for K1.

Case 1. Here we use the fact that r̂ � 1=2, � > 2=n2, and 1+1=n2 � 2 to estimate

K1(n; r̂) � 2�2 � 2
Z 1

� 1
2 (1+1=n

2)

1q
1
2 �

2
n2 + u

2
dy

� 4�2
Z 1

�1

1q
1
n2 + u

2
du

= 4�2
Z n

�n

1p
1 + v2

dv

� 8�2
�Z 1

0

1 dv +

Z n

1

1

v
dv

�
= O(ln(n))

18



Case 2. In addition to the above estimates for � and (1+ 1=n2), we use r̂ < 1 and
the fact that now r̂(1 + 1=n2) � 1� r̂(1 + 1=n2). It then follows that

K1(n; r̂) � 4�2
Z r̂(1+1=n2)

�r̂(1+1=n2)

1q
1�r̂2
n2 + u2

du

� 4�2
Z 2r̂

�2r̂

1q
1�r̂2
n2 + u2

du

� 8�2
Z 2nr̂p

1�r̂2

0

1p
1 + v2

dv

where we used the substitution v = nu=
p
1� r̂2. It is easy to see that the

function r̂ 7! r̂p
1�r̂2 is monotone increasing on [0; 1), so the upper limit of

the above integral is (in case b) smaller than

2nr̂p
1� r̂2

���
r̂= 1

1+1=n2

=
2n 1

1+1=n2q
1� ( 1

1+1=n2 )
2

=
2np

(1 + 1=n2)2 � 1

� 2np
1=n2

= 2n2

Similar to case 1 we estimate

K1(n; r̂) � 8�2
 Z 1

0

1dv +

Z 2n2

1

1

v
dv

!
= O(ln(n))

Case 3. Here the integral is only over negative numbers. We again use the above
mentioned estimates for � and (1 + 1=n2), and we use r̂ < 1 to derive

K1(n; r̂) � 4�2
Z 1�r̂(1+1=n2)

�r̂(1+1=n2)

1q
1�r̂2
n2 + u2

du

= 4�2
Z nr̂p

1�r̂2
(1+1=n2)

np
1�r̂2

(r̂(1+1=n2)�1)

1p
1 + v2

; dv

We have again used the substitution v = nu=
p
1� r̂2. This time we

calculate the integral in order to get our estimate. First we rememberZ
1p
1 + v2

dv = ln(v +
p
1 + v2)
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Then we get

K1(n; r̂) � 4�2 ln
�
fn(r̂)

gn(r̂)

�
where

gn(r̂) := n(r̂(1 +
1

n2
)� 1) +

s
(1� r̂)2 + n2

�
r̂

�
1 +

1

n2

�
� 1
�2

fn(r̂) := nr̂(1 +
1

n2
) +

s
(1� r̂)2 + n2r̂2

�
1 +

1

n2

�2
The function

 (n; r̂) := (1� r̂)2 + n2
�
r̂

�
1 +

1

n2

�
� 1
�2

has its minimum at

r� :=
n2 + 1

n2 + 1 + 1
n2

2
�

1

1 + 1
n2

; 1

�
and one can derive

 (n; r�) � 1

2n2

This implies

gn(r̂) �
1p
2n

For fn(r) it is easy to see

1 � fn(r̂)

� 4n

So we �nally get
K1(n; r̂) � 4�2 ln(8n2)

Using the results from the cases (1)-(3) together with the estimate for K2

proves the existence of a constant c5 > 0 in the statement of the lemma.
In the next two lemmata we study the total variation of rJ1(n; r̂; r) and

rJ2(n; r̂; r) on [0; 1].

Lemma 9 There is a constant c6 independent of n and r̂ such that

Var(rJ1(n; r̂; r)) � c6n ln(n):

Proof. As in the proof of Lemma 7 we introduce the notation r̂ = cos( ),
 2 [0; �=2] and substitute r = cos(�), this will not change the maximum values
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of our function and the monotonicity is just reversed, but this does not change
the total variation. So we study the function

f(n;  ; �) := f1(n;  ; �)f2(n;  ; �)

f1(n;  ; �) :=
cos(�)p

�+ sin( + �)2

f2(n;  ; �) := K

 s
sin(2 ) sin(2�)

�+ sin(�+  )2

!

=
�

2
F2;1

�
1
2 ;

1
2 ; 1;

sin(2 ) sin(2�)

�+ sin(�+  )2

�
See Lemma 7 and formula (30) for the de�nition of �. Note that we also ne-
glected the constant in the function rJ1(n; r̂; r). The following observation al-
lows us to treat f1 and f2 separately

Var(f1f2) � kf1k1Var(f2) + kf2k1Var(f1)

First we study f1.

f1(n;  ; 0) =
1p

�+ sin( )2

f1(n;  ;
�

2
) = 0

@f1(n;  ; �)

@�)
= �� sin(�) + sin( + �) cos( )

(�+ sin( + �))
3=2

� 0;  ; � 2
h
0;
�

2

i
:

This implies

kf1k1 = Var(f1)

=
1p

�+ sin( )2

� 1p
�

� n:

Now we turn to f2, and remember that F2;1( 12 ;
1
2 ; 1; �) is a monotone increas-

ing function on [0; 1], F2;1( 12 ;
1
2 ; 1; 0) = 1 and (see (36))

F2;1
�
1
2 ;

1
2 ; 1; z

�
� c4(1� ln(1� z)); 0 � z < 1:
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So we �rst have to understand the behavior of the function inside the logarithmic
term:

f3(n;  ; �) := 1�
sin(2 ) sin(2�)

�+ sin(�+  )2

f3(n;  ; 0) = 1

f3

�
n;  ;

�

2

�
= 1

@f3(n;  ; �)

@�
= � 2 sin(2 )

(�+ sin( + �)2)2
[� cos(2 ) + sin( + �) sin( � �)]

It is easy to see that both terms in the square brackets are decreasing. The
values range from �+ sin( )2 > 0 to ��� cos( )2 < 0, so f3 is �rst decreasing
and then increasing. We estimate the minimum value of f3 (see also the proof
of Lemma 7)

f3(n;  ; �) =
�+ sin( + �)2 � sin(2 ) sin(2�)

�+ sin( + �)2

� �

�+ sin( + �)2

� �

�+ 1

� �

2
� 1

n2

if n � 2. Together with the monotonicity of F2;1 this proves

kf2k1 � c7 ln(1=�) � c7 ln(n
2)

Var(f2) � c7 ln(1=�) � c7 ln(n
2)

with a suitable constant c7 independent of n and r̂ = cos( ). This �nishes the
proof of Lemma (9).

Lemma 10 The function rJ2(n; r̂; r), de�ned in (33) satis�es

Var(rJ2(n; r̂; r)) � c8n
2

where c8 > 0 is independent of n and r̂.

Proof. We de�ne

f(n; r̂; r) :=
rq

(r̂ � r)2 + 1
n4 +

2
n2 (1� r̂r))
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to estimate the total variation of rJ2(n; r̂; r), where we neglect the constant in
(33). We have

f(n; r̂; 0) = 0; and

max
r2[0;1]

f(n; r̂; r) � n2

@f(n; r̂; r)

@r
=

�r̂r(1 + 1
n2 ) + r̂

2 + 1
n4 +

2
n2�

(r̂ � r)2 + 1
n4 +

2
n2 (1� r̂r))

�3=2
So we have

@f(n; r̂; r�)

@r
= 0 ,

r� =
r̂2 + 1

n4 +
2
n2

r̂
�
1 + 1

n2

�
This implies that f(n; r̂; �) is either increasing and then decreasing, or only
increasing on [0; 1]. This allows to conclude

Var(f(n; r̂; �)) � 2n2

which proves the lemma.

Proof of Theorem 1:
Theorem 6 shows that we can use Lemma 3 to estimate the sum (34). This
gives us

kLnkC(D)!C(D) � c1(n)

�Z 1

0

rJ1(n; r̂; r) dr +
1

n

Z 1

0

rJ2(n; r̂; r) dr

+
c2
n
Var(rJ1(n; r̂; r)) +

c2
n2
Var(rJ2(n; r̂; r))

i
� c1(n)

h
c3 + c5

ln(n)

n
+ c2c6 ln(n) + c2c8

i
= On!1(n ln(n))

where we have used Lemma 7�10 and the fact that c1(n) = On!1(n).

Remark 11 The proof shows that kPnkC(D)!C(D) � c3c1(n), because this is
the estimate for the iterated integral.

5 Numerical examples

We solve a semi-linear Poisson problem of the form

��u(x) = f(x; u(x)); x 2
�
D

u(x) = 0; x 2 @D
(41)
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Let G(x; y) be the Green�s function where x; y 2 D. The solution u to (41)
satis�es

u(x) =

Z
D

G(x; y)f(y; u(y)dy; x 2 D (42)

As in Kumar and Sloan [12], introduce v(x) = f(x; u(x)). The function v is a
solution of

v(x) = f

�
x;

Z
D

G(x; y)v(y)dy

�
; x 2 D: (43)

This is the equation we solve with Galerkin�s method. After �nding v, we
calculate

u(x) =

Z
D

G(x; y)v(y)dy; x 2 D: (44)

Let �n denote the space of all polynomials in two variables of degree n or
less, as described in Section 2 and let f�n : 1 � n � N := (n+1)(n+2)

2 g be a
basis for �n. We choose �n to be the �ridge polynomials�introduced by Logan
and Shepp [13]. We approximate v by vn:

v(x) � vn(x) =

NX
m=1

�m�m(x)

The Galerkin method for solving (43) consists of determining the coe¢ cients
f�mg by solving the nonlinear system

NX
m=1

�m(�m;�n)�
�
f

�
x;

Z
D

G(x; y)vn(y)dy

�
;�n

�
= 0 (45)

for n = 1; : : : ; N . Since �n�s are the ridge polynomials,

(�m;�n) = �mn;

and Z
D

G(x; y)�m(y)dy = 	m(x)

where 	m�s are polynomials de�ned in Atkinson and Hansen [6]. The term�
f

�
x;

Z
D

G(x; y)vn(y)dy

�
;�n

�
=

 
f

 
x;

NX
m=1

�m	m

!
;�n

!
is also approximated by  

f

 
x;

NX
m=1

�m	m

!
;�n

!
d

as de�ned by (4). Thus, the nonlinear system (45) is simpli�ed as

�n �
 
f

 
x;

NX
m=1

�m	m

!
;�n

!
d

= 0 for n = 1; : : : ; N: (46)
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Newton�s method was used to solve the nonlinear system (46). For the solution
of equation (41),

un(x) =
NX
m=1

�m	m(x):

The �rst numerical example we solve is the problem as seen in Atkinson and
Hansen [6]. Note that D is the unit disk in R2.

��u(x) = eu(x;y) + �(x; y); x 2
�
D

u(x) = 0; x 2 @D

with �(x; y) chosen such that the true solution is

u(x; y) = (1� x2 � y2)ex cos y; (x; y) 2 D

In Table 1, we give numerical results for n = 1; : : : ; 20. The error was evalu-
ated using a polar coordinate mesh of approximately 2500 points. The linearity
of the semi-log graph in Figure 1 shows that the convergenc is exponential in n.
From (6) and (9) we expect that the convergent rate is faster than O(n�k), for
every k 2 N, if the solution is C1(D).

deg N ku� unk1 keu� eunk1 deg N ku� unk1 keu� eunk1
1 3 7.33E-1 7.84E-2 11 78 5.93E-7 1.13E-6
2 6 7.61E-2 2.74E-2 12 91 1.42E-7 4.02E-7
3 10 2.10E-2 7.19E-3 13 105 3.67E-8 1.42E-7
4 15 4.92E-3 2.15E-3 14 120 9.53E-9 5.08E-8
5 21 1.44E-3 7.18E-4 15 136 2.26E-9 1.81E-8
6 28 4.04E-4 2.32E-4 16 153 5.67E-10 6.52E-9
7 36 9.28E-5 7.84E-5 17 171 1.36E-10 2.33E-9
8 45 3.21E-5 2.66E-5 18 190 3.20E-11 8.46E-10
9 55 8.03E-6 9.30E-6 19 210 7.75E-12 3.06E-10
10 66 2.05E-6 3.24E-6 20 231 1.80E-12 1.10E-10

Table 1: Maximum error in un

The second numerical example we solve is the Debye-Hückel equation, see
[9] (

��eu(x; y) = � sinh(eu(x; y)); (x; y) 2
�
D

eu(x; y) = eg(x; y); (x; y) 2 @D
(47)

We assume that eg is given as a function on D. De�ne
u(x; y) = eu(x; y)� eg(x; y):
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Figure 1: log10(Error) vs. n

Then, u(x; y) = 0 for (x; y) 2 @D and

��u = ��(eu� eg) = ��eu+�eg = � sinh(eu) + �eg
= � sinh (eu(x; y)� eg(x; y) + eg(x; y)) + �eg(x; y)
= f(x; y; u(x; y)):

Thus, instead of solving the Debye-Hückel equation, we solve the equation (41).
Then, the approximated solution eun of the equation (47) is

eun(x; y) = un(x; y) + eg(x; y); (x; y) 2 D:

As a test case, we choose

eg(x; y) = exp�x+ y

�

�
:

The true solution of eu is unknown, so we use eu25 as our true solution, and it is
illustrated in Figure 2.
As in Example 1, we give numerical results for n = 1; : : : ; 20 in Table 1. The

error was evaluated using a polar coordinate mesh of approximately 2500 points.
The linearity of the semi-log graph in Figure 1 shows that the convergence is
exponential in n, as in Example 1.
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Figure 2: The true solution eu25 for Example 2.
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