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Abstract
In this paper, we consider solving the single layer integral equa-
tion (3) on a closed surface in R®. The numerical method is based on
Galerkin’s method with spherical polynomials as the approximation-
ing functions. We study the error of the approximating solution in
suitable Sobolev spaces.
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1 Introduction

Consider the solution of the following Dirichlet problem:

Au=0 in Q
{u:ug on I’ (1)

with € an open bounded simply-connected region in R®. Assume that I' =
092, the boundary of Q, is sufficiently smooth. From [6], the solution can be
represented by the expression
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wX) = hTx oy A e )



in which ¢(Y) is called a single-layer density function and is determined by
solving

1 Y

E/F%dY:uo,XEF (3)
In this paper, we solve (3) by Galerkin’s method with approximations based
on spherical harmonics on the unit sphere. We study the error of the solution
in suitable Sobolev spaces, and we give both a practical implementation of the
numerical method and numerical examples. The details are presented below.
Briefly, the numerical method is presented in section 2, and the practical
implementation of the numerical method is covered in section 3. In section
4, we give numerical examples.

2 The Numerical Method

Let Sobolev spaces H(G) (G C R™ with G having a non-empty interior,
t € R) be defined as follows: For an integer ¢ > 0, let

HY(G) = {f 117 = 2 N0 f 726y < o0}

l7]<t

The derivatives are distributional derivatives. For £ > 0 and not an integer,
let t = p+ b, p an integer, and 0 < b < 1. Define

HQ) = 1 LI = i+ [, [ A otevioty) < )
)

for j = (j1,...,Jm), & f(z) = W. For t < 0, let

the dual space of H™(G); see [9)].
We suppose T is regular (see [6]). Then we assume that

P=UL and Ti={(z,y Fr,y) | (z,y) € A} (5)



where A; is an open bounded simply-connected region in R?, and Fj is a
smooth function on A;, ¢ =1,---, k. For any function ¢ on I, define

gl(xvy):gl(xvyaﬂ(xay))a gl:g|Fla Z:]-aak

The Sobolev spaces H!(T") for any real number ¢ are defined as follows:

H'T) = {g [ 19l ey = o legzllm <o}, €l

Kq(X) = ﬁ/ﬁ X‘{(_Y)Y @y

Then (3) can be written as

Let

Kq(X) =up(X), Xel (6)

From [6], K is an isomorphism of the Hilbert space H2(I") onto the Hilbert
space H?(T); and the associated bilinear form

XdY
94 47r//|X Y|dd

satisfies a strong ellipticity condition:
’ 1
a(g:q) > Cllally, 3, ¢ €H *(D), C>0. (7)

Then it can be shown that solving (6) converts to the problem of finding
q € H™2(T") for which

a(q,q) = (uo,q), all ¢ € H3(T) 8)

2.1 Construction of a finite dimensional subspace of H_%(F)
Let U denote the unit sphere in R3,

U={(z,y,2) | 2°+y*+ 2" =1}



From [7], there is a standard orthogonal basis of spherical harmonics for
L*(U). Let P,(u) and P™(u) be the Legendre polynomials and associated
Legendre functions on [—1,1], n >0, 1 < m < n. For (z,y,2) € U, let

(x,y,2) = (cos ¢sinb,sin ¢psin b, cos f)

for 0 < ¢ < 2w, 0 < 0 < w. The basis functions for the spherical harmonics
of degree n are

P,(cos @), P*(cos B cosme), P (cosfsinme), 1 <m<n

The total number of basis functions of degree < N is dy = (N + 1)% Let
HY---HJ_ be normalized basis functions in L*(T') and let Xy be the space
of spherical polynomials of degree < N:

dn
Xy =Span{H;---Hy } ={) a;H) | a; € R}
=1
Then easily Xy C H™2(U).

Assume that there is a C™ mapping M : U%F. For any function g
defined on I', we define g on U, by

~ _

9(Q) = g(M(Q))
for any Q € U. This defines a map M : L(I') — L2(U), with Mg = g.
Let Vi be the finite dimensional space:
Vy = Span{n - - - nay }
where B
n:(Q) = H) (M~1(Q))

forQeTl,i=1,---,dy. The result that Vy is a subspace of H’%(F) or that
Vy is a subspace of all Sobolev spaces H'(T') (¢t € R), is obtained immediately
from the following theorem.

Theorem 2.2 Assume M : U%)»F is a C'°° mapping. Then for any t > 0,
the associated linear mapping M : Ht(F)i»Ht(U) and ||Mf|lgeqry 18

onto
equivalent to || f|| ey, for any f € HY(L'). By duality, the map M can be
extended uniquely to a bounded map of H‘t(F)%)»H_t(U).
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In order to prove the theorem, we need some lemmas.

Lemma 2.3 Letr € R, Then g € H"(U) if and only if its Laplace expansion
satisfies

SEn+ 1D {an P+ 3 al P+ 150 P} < oo
n=0 m=1

where N .
9= {anH,+ > [ay HJ} + by HB}
m=1

n=0
In this, H,, H}, HS, 1 < m < n, are orthonormal spherical harmonic basis
functions, discussed earlier.

Proof: See [11], Theorem 6.5 on p.264. O
Lemma 2.4 Let g € H"(U), r € R, and define

gl y = Qo @n+1)* {lanl® + 3 [l [* + [b771°]})?
n=0 m=1
where N .
9= {anH,+ >l Hyy + b Hipl}
n=0 m=1
Then || - ||, s equivalent to the usual H™ norm || - || ;-
Proof: See [11, p. 215 and p. 259] O

Lemma 2.5 Define

<91792>*L2(F) = /FW(Q)91(Q)92(Q)dS
where .
W(M(Q) = ——
Jir(Q)
for Q € U with Jy the Jacobian of the mapping M. Then | - ||*L2(F) I8
equivalent to || - ||L2(F) and ||g||*L2(F) = ||g||L2(U) with

~

9(Q) =9(M(@Q)), QeU.



Proof: Since M is a one-to-one (' mapping of U onto I, we can assume
0< Dy <Jz(Q) < Dy < o0
for some constants Dy, Dy. Hence
0<C<W(Q) <0y <o
for suitable constants C',Cs and Q € I'. Then
Cillgllzy = Ci [ lglds
lglloy = [ 1W(@lgfds

< G [ 1g1* = Callgloqr

IN

Thus || - ||,z is equivalent to || - ||z, and
<91792>*L2(F) = . W(Q)g:1(Q)g2(Q)ds
= UW(M(Ql))m(M(Q1))92(M(Q1))JM(Q)618
= [ 91(Q(Q)ds

A

= <91a §2>L2(U)

Hence
||g||*L2(F) - ||g||L2(U)
O

Proof Theorem 2.2: We have assumed I" to be regular as mentioned. Now
we only prove this theorem for the case of one of the sub-surfaces I'; of (5),

Fi = {(xayaFi(xay)) | (l‘,y) € AZ}

with Fj infinitely differentiable and A; an open region in R2. For any
g € HY(T'), define
9(@,y) = g(z,y, Fi(z, y))

||9||Ht(ri) = ||§||i[t(/\i)

6
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Recall that §(Q) = g(M(Q)) where
M:U—=T
is a 1-1 and onto smooth map, we can assume that
U = M~ (T;)

and

where A; is an open region in R?, G is infinitely differentiable and

(& m) = §(&,n, Gi(&,m))
Hence
190 greory = ||§||i]f(Ai) if g € H'(Uy).
Define a projection map P on A; by
P:Ti = Ay, by P(z,y, Fi(z,y)) = (,9);
amap L:A; = A; by

and amap T : A; — R? by

oL (z,y) 3L‘1@3y))
or oy

T(z,y) = (

Since Gj, P, M are all smooth maps, so are L and 7.
Case 1. t =1,

oy = [ Valdsa,+ [ lgrad(@)dsn,

- s

where J, is the Jacobian matrix for the mapping L. By the smoothness of
L and L™', we can suppose that

o6 9¢

A€ PIuldss, + [, larada(cieon) ( 55 G ) Flanliss
i Oxr Oy

i

|JL| §02<OO
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9¢  o¢
or Oy

for C5, C'5 are constants, so

9wy < [ ColdPdsa, + [ lgrad(§)PCiCodsa,

< O lilPdsa + [ lgrad()dsa,)
= C||§||§{1(U)

for some constant C' < oo.
Similarly, we have

~112 2
191wy < Cllglz e,y

for C' some constant.
Case 2. t=1+b, 0<b<1. Recall that T,L,L ! are all smooth, for any
(&1,m), (&2,m2) € A4, we have the following:

[T (L(&1,m)) — T(L(&2,m2))] < Cl(&,m) — (2, m2)]
|L(&,m) — L(&2,m2)| > C|(&,m) — (§2,m2)]

and

T(L(E, )| < C
max [T(L(Em)| <

with C' a generic constant.

2 |39 5U1,y1 3g(x2,y2)|
L= +// ds
||9||H1+b(n) g ||H1 (21, 51) — (22, ya) 272

202 39 51,771 §(L(§2,772))|2
C'||9||Hl // |L 51,771 (52,772)|2+2b |JL|dS

IN

IN

212
Cllgle

i // |39 51,771 39(52,772”2 |(§1,771) (52,772)|2+2b
51,771 52,772)|2+2b |L(§17771) (52,772)|2+2b

2 IT(L(&1,m)) — T(L(&,m2)))?
+ /Ai /Ai 109(&2,m2) |2 LE.m) — L (e ) 2 | Jp|dS

|T(L(§1, 771)) | |JL|dS

8



IN

10G(&1,m) — 0G(&a,m2))?
C||9||H1 +C/ / 51,771 52 ,72)|2+2b ds

2 2 1
d
+ CAZ ~/AZ |ag(§27772)| |(§17771) - (627772)|2b 5

1
771) - (52,772)|2b

22 202 1
CWllssany + Clilliwy [y e =

IN

2,2 2
Cllgll grseq,y) + C/A_ |0g|*dS /A_ d&idm

IN

|2b dé-l dT]l

< CHgHiIH‘b(UI)
since ]
d&pdn < C < o0
/Ai |(§17771) - (527772)|2b e
for 0 < b < 1.
Similarly,

||g||H1+b < C”gHHH—b

Case 3. t >0, an integer. This is similar to Case 1, and we omit it.
Case 4. t > 0, non-integer. Let £ = m+b with m an integer and 0 < b < 1.
This is similar to Case 2, and we omit it.

Case 5. t < 0,t € R. Then we treat H'(I') as the dual space of H *(T).
Let t = —7 with 7 > 0, then

H™(T) = (H"(T))

H™(U) = (H"(U))
For any f € H™"(I),

flv
171 = sup _J)
L e
is equivalent to X
N fu
1= sup L
L T



with f € H "(U) defined by

where 0 = u for any u € H™(U).
Now we define :
M : HY(T) — H'(U)
by R
Mf=Ff, forany fe HYI)
Then M is 1-1 and onto linear map, and ||f||Hf(U) is equivalent to || f{| g (r)-

|

2.2 The Galerkin method and error analysis
We approximate the solution ¢ of (8) on the finite dimensional subspace

VN = Span{nla v ndN}
where )
ni=HM™' = M™'H}

from Section 2.1. Let gy = E?ﬁl a;n; € Vi be the solution of the Galerkin
equation

’

algn,q) = (uo,q), all ¢ € Vy

In particular,
a(gn, ni) = (uo, i), i =1,2,---dy.

Hence our Galerkin’s method for solving (8) is given by

qn = 2?21 Qj1];
(9)

2?21 ajaj(n,m) = (u,m), 1=1,2,---,dy

Theorem 2.6 Let q,qy be defined on T as above, and let ¢ € L*(T"). Then
qn exists, is unique, and

la—avlly 5 = 0. (N = o00)
This says the method (9) is convergent.

10



Proof: ¢y exists by using the strong ellipticity condition (7),
2 _1
a(q,q) = Cllally-y o, g€ H2(T)
and the Lax-Milgram theorem; see [10, p. 171]. From this reference,
lg —anlly-y ) < € inf lla = pll gy < € inf llg = pllpery  (10)
with C a constant independent of N. Note that
lg — p”*L?(F) = [lg —ﬁHL?(U)
with
dn
1
Thus
Jnf llg = pllpeey = inf 10 = Plle@y = 16— Prdllew)
Returning to (10)

|
In order to get a more useful error bound, we need the following two
properties.

Lemma 2.7 (Approzimation property) Let s,t € R with t < s, Then for
any u € H*(U), there is an element uy € Xy with

lu = unlgrecery < ON"Mull e
namely uy = Pyu.
Proof: By Lemma 2.3 and Lemma 2.4, for r € R,
H"(U) ={g [ |9ll.zrr) < o0}

where

9= AanH, + Y [ay Hyy + 0 Hbl}
n=0 m=1

11



and

M

19l ey = [ D@+ 1) {] an P+ D [l ag P+ [0 1}
n=0 m=1

is equivalent to [|g[| (). Now for u € H*(U), suppose

w= Y {a H, + Y [ay Hyy + by Hybl
n=0 m=1

Let
N

un = Y {anHy, + ) lay Hyy + 03 Hijbl}
m=1

n=0
Hence uy € Xy, and

2 2
lu— UN“Ht(U) < Cllu— uN“*Ht(U)

= C i(2n+1)2t{| ap [ + Enj[l ay [*+ 1o P}

n=N m=1
= O3 (@n+ D" @+ 1)"{[an "+ X [lay P+ b7 I}
n=N m=1
< CENPED S n+ 1) {an P+ X[ ay [P+ |05 P}
n=0 m=1
< ON*INullZ ey
< ON*9)||u ?IS(U) for some constant C

So
lu = unlgreqery < ON"Mull e

O

Lemma 2.8 (Inverse property) Let t,s € R with t < s. Then for any
v € Xy,
[0l o0y < ON* [0l eery

with C independent of v and N.

12



Proof: For any v € Xy,

Z{anH + Z [aH + 0P HD]

n=0
and
] iIS(U) < CHU“iHS(U)
N n
= OY Cn+1)*{lay P+ D [lay P+ 107 [}
n=0 m=1
N n
< OY @n+ 1)+ 1) {[an 2+ X [[an P+ [0 P}
n=0 m=1
N
< C@N+1)26°9% (2n+1 2t{|an|2+2|a >+ 10 P}
n=0 m=1
< CN* ol 2y < ON*C ol e,
So

9] sy < CON* 0]l ey

O

Theorem 2.9 Let q and qy be defined as above in (6) and (9). If ¢ € H*(T),
any s € R, s > —%, then for any —% <r <s,

1
str

)

lg — g H™(T) — O(

Proof: Define a projection
Ly:H3(I) = Vy C H3(I)

such that
1
Lyqg=qy forany qe H 2(I)

Then Ly is a bounded projection. In fact, by the strong ellipticity condition

(7),

2
a(g,9) = allglly -4y @ >0

13



This means that for any ¢ € H2(I') and

1 q(Y)
Ka(X) = _/ )
1) = X o
we get
2
(Kg,q) = allall-4
From [14, p. 9],
_ 1K, 2
That is ©
ewt < B o
(6%

and Ly is bounded.
If ¢ € Viy then the solution of

a(q,q) = (uo,q) , allg € Vy
is ¢ itself. Hence
gy =q or Lygq=g¢q, any ¢ € Vy.

Thus Ly is a projection.

Now for ¢ € H"(T'), r € R, by Theorem 2.2, we have a unique ¢ € H"(U)
with Mq = ¢. By the Approximation Property, for any s > r, we have
Giv € Xy, (qi,n € Vi) for the orthogonal projection that

||Cj - cjl,N |HT(U) S CNT_SH(N

He(U)

Also

lg — qn]| Cllad = anll ey
C[llg — il
C [Hq - Q1,N| HT(F)]

C [Hq - QI,NHHT(F) + H‘CN(QI,N - q)”gr(r)]

HM(T)

IN

HT(U) + ||qA1,N - qN| HT(U)]

IN

HT(F) + ||Q1,N - QN|

IN

14



From the Inverse Property,

. . ra .
a8 = anll ey < ON" 2 |lduw — axlly s 0

Then we have

1
I1Ln(qin — q)“HT(I‘) < CN"™"3||Ly(qin — q)

”H*%(r)
Hence
lg — q1,v] ey |1Ln(g1,v — q)] H™(T)
1
S C||q_QI,N| H"(F) +ONT+2||£N((]1,N _Q)“H*%(F)
1
S CH(] - ql,NHHT(F) + CNT-'_Q ||q1,N - q”H_%(F)
L. 1,
< Cllg— q.n| HT(T) +CN'"™2N > g —q| H™(T)
S CHqI,N - q||H7‘(F)
S CH@I,N - (ﬂ H"(U)
< ON"(|dll e vy
< CNT_SH(AHS(F)
So

1
lg — (IN||Hr(F) = O(Ns,,n)

for any s > r, and ¢ € H*(T").

2.3 Condition number of system
We approximate the solution ¢ of (8) by Galerkin’s method on V. The
method leads to solving the usually small linear system

Ba=b

where

B = (ai,j)dNXdN7 ai,j = a(nl,n]) 7,,] = ]_, 2, s dN

aT:(a17"'7adN)7 ' = ((U07771)7"'7(U0777d1v))

The following theorem gives an upper bound for the condition number of the
matrix B.

15



Theorem 2.10 The condition number of the matriz B is O(N):
Cond(B) = ||B|||B~|| < CN
for C a constant.

Proof We define the matrix norm by

B
1Bl = max 241
neRM 20 1|

It is known that the smallest and largest eigenvalues of the symmetric positive
definite matrix B satisfy

0 < Apin = min @, mez = Max @
neRM nz0 |n|? neRM 0 |12
where | - | denotes the usual Euclidean norm,

M o 1
Inl=0_n)?
=1

Thus the condition number of B is given by

)‘ma:v
Cond(B) = ||B[[|B~']| = 7=

min

See [12, pp. 126-123].
Recall that
(i, m)er2y = (s ) r2y = (HY HY)) 2y = 65 5 4,5 = 1,2, dy.
So for any gy € Vy with gy = E?i’l a;n;, there is a unique
a=(ay, - ag,) € R™

and

dyn
ol = 4| |aif* = VaTa
i=1

16



In addition,

dy dy

lan 1172y = (v an)erzy = (3 cimiy 3 cimi)urzry = 3 O @i (15, 1) a2y = o'
i=1 j=1

From Lemma 2.5, there are constants C;, Cy (independent of N) for which

Cillanllzzry < lavllrery < Collanllpery, N 21

So
(1) C1a”a < gy < Caa

From previous results (in the proof of Theorem 2.10), we have

a(gn, qn) > CS“QNH;—%(F)
and
lawllzaey = I Zxall oy < CaN 21 Lal, 30y = CaN2llawll ;-4
with C3, C, are constant. So
a(gn, qn) > C3||(IN||2—%<F) 2 C5N71||(1N||iz(r)

with C5 constant, and

(Kan, an)
< Wanll g oy lawll

2
< ICllanl?,-s,

a(gn, qn)

2
n S Collan |72y

where Cj is a constant. Thus

(2) O5N71||QN||§,2(F) < a(QNan) < C5||qN||iZ(F)

Hence we have the following from (1) and (2):

2
o'Ba algn,qn) < Collan lIz2ry <C
T To =

ol a ol — o

17



_ 2
o' Ba algn,qn) S CsN 1||qN||L2(F) > 1

aTa o = olo CN
Then .
)\max_supaTBa SC
a0 O«
. . oa"Ba 1
A, = ér?léf(; T > Cﬁ
Hence

for some constant C.

(]
2.4 Error bound for uy
The error bound for solving (2) is obtained as follow. Let
X)=— dy, X e 11
wX) =4 i o Y e ()

Using the maximum principle for harmonic functions,

max [u(X) —un(X)| = max|u(Z) —un(Z)|

with respect to the true solution u of (2). Let X — Z € T from (11), we

have

So
|u(2) = un(Z)| = [K(g = an)(2)]
Recall that for any 0 < e <1, H**¢(T") C C(I") and
19lloe < gl 1+«

Also
K: H¢ — H'f

18



is a bounded operator, see [10, p.124]. Thus for Z € T,

K(q —an)(Z)] < C[IK(g = an) |
< Cllg — gl g
By Theorem 2.9
lg = gnllge < CN“lgllge

forany g € H", r >e.

Hence

max [u(X) — ux(X)| < ON|lg

H(T)

and this converges to zero as N — oo, provided ¢ € H"(I') with r > e.

19
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3 Implementation of Galerkin’s method

The Galerkin’s method we described above converts our problem (3) to the
usually small linear system (7). The most difficult part of the implementation
is the calculation of the Galerkin coefficients (n;, Kn;), for 1 <i,j < dy. Each
of these is a double surface integral over I', with Kn; involving a singular
integrand; and both integrals must be calculated numerically. With a proper
transformation (see [2, p.4]), we can assume that all integrals are over U,
the unit sphere. We use a ‘product Gaussian quadrature method’, which is
discussed in paper [3].
Let

1) = [ f@dsq = [ [ £(6.0)sin(0)0do

with f(¢,0) denoting f(Q) with Q@ = (cos ¢sinf,sin ¢ sin @, cosf). Approxi-
mate this by the product Gaussian formula

() = 85" S w0, (60.6,) (13)

i=1j=1

Here M > 1, 6 = {7, ¢; = i0 for i = 1,2,---2M; and {w;}, {cos(f;)} are
the Gauss-Legendre weights and nodes of order M on [-1,1]. The degree of
precision of the formula is 2M — 1 (see Stroud [13, p. 40], or see [3]).

Theorem 3.11 For f € H(U) witht > 1, t € R,
In(f) = I(f)

as M — oo. Moreover,

C

(f) = In(f)] < m”f||Hf(U)‘

Proof: Fort>1, HY(U) C C(U) From [3, Theorem 3],
Iu(f) = I(f) as M — oo
for f € C(U). Also, we can write f € H'(U) as

f=2_ |anHn+ Y (ay Hyy + b Hy) (14)
n=0 m=1

20



where H,, H"\,H",, m =1,---n,n = 0,---00 are orthonormal basis from

the normalization of orthogonal basis functions
P,(cos®), P (cos 8) cos(ma@), P (cos ) sin(ma)

fort<m<n,n=0,1,---00
Using these basis functions, we can write

f(,0) = i lAnPn(cos 6) + En: {A" cos(me) + B sin(mg)} P (cos 9)]

n=0 m=1

= g(0,0) + Z [A P,(cosf) + Z{Amcos(md))+Bms1n(mgz$)}Pm(cosﬁ)

n=2M m=1

where { A", Bi"} are given below in (15) and (16), and each such coefficient is
an appropriate multiple of the corresponding coefficient in (14). Also, g(¢, 0)
is a polynomial degree < 2M — 1,

g(p,0) = i lAnPn(cos 6) + En: {A" cos(mg) + B sin(me)} P (cos 9)]

n=0 m=1

Since
/ pt(cosf)sinmpdU = 0
U

/ P (cosh)cosmpdU = 0
U

/ pn(cosf)dU =0
U

for n > 1. Hence

0 2m
I = ) + A, P,(cos0) sin 0dfd
(f) nz;M/ / (cos ) sin 0

+ Z{Am / / cos(me) P™ (cos 0) sin 0dfde

+ B™ /%/ sin(ma@) P (cos 0) sin()d0d¢}]

21
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For the numerical integral I5/(f),

oo

In(f) = Inl(g)+ Y [AnTar(Pa(cos))

n=2M

+ zn: {Am I (cos mo Py (cos 0)) + B Iy (sinm¢gP) (cos 0)) }]

m=1
So we have
n=2M
+ Xn: {A I (cosmp Py (cos0)) + Bl Iy (sinmg Pl (cos 0)) }]
m=1

By [7, pp. 88,118],

-1 2n+1
1 (n+m)l 2
P (z)|*d
/71| v (@)l (n—m)!2n+1
Let
A=A, a =a,
Then
2 1(n—m)!
A = ntlin—m ap’ for m=0,---n (15)
\ 2 (n+m)!
2 1(n—m)!
B" = ntlln=m byt for m=1,---n (16)
2 (n+m)!
The trapezoidal rule is given by
R m—1
Tn(f) =h ) f(t;)
j=0

with h:%, tj = jh, for 0 <j < oo. We have

v | 2, k=0 (modm)
Tm(ek)—{ 0 , k#0 (modm)
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see [5, p. 17]. So Ty, (sin kt) = 0, for all k, that is
m—1
h Z Sin(k'tj) =0

J=0

for any k. Hence we have the following:

Iy (sin(mo) P (cos(f))) = (6 Z_O sin(mjé))(;wiPTT(cosﬁi))
=0

for all integer m.
Since [|Ij/|| = 47 as a linear function on C'(U), we have

2M M
522&)]':471'
i=1 j=1
Then
oM M
I(f) = Tu(f)] = 16D > wj Z ZAum cos 0;) cos ma;

1=1j=1 n=2M m=0

2M M 2n+1(n—m)! -
- 5;;% n%:Mng:O\J (n+m)!a" cos me; 3" (cos ;)
oM M “o(2n+1(n—m)! .. -
: 612;72:1% n%:MmZ:O\J (n+m)!|Pn (cos(0;))] |ar'|
00 “2n+1(n-—m) ira . L
< 47rn22:M L;O > (g m) | P (cos 6;)] ] LnX:O|an| ]

:47TZ

n=2M

2n + 1 n m25
> lag|
2 m=0

This last step uses the result from [8, p. 7]. Then

=

) = Iu(f)] < 47 S [(2”+—1)2t“ S (204 1) 2t|am|2r
n=2M m=0
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<[5 O[5 S e yta]

< C[/ooz 1—2“1(1]5 t
< o[ [T+ 0 ] 1l

< C
< WHfHHt(U)

where C' is a constant depending on ¢. O
Note: The result obtained here is slightly stronger than the convergence
result from [3, p. 334].

3.1 Numerical Evaluation of Galerkin Coefficients and uy
To evaluate Kn;, we use a method described in [4]. Write

with P, € U and an appropriate K defined on U, K is the kernel func-
tion for mapping K. Note this integrand has an unbounded discontinuity
in f((Pu,Qu) at Q, = P,, If we apply method (13) to (17) directly, the
convergence will be slow. So in order to avoid this, we use a new spherical
coordinates representation for the integral, see [4, pp. 89-90], with

Q. = Qu(qﬁu, 9”) = (cos ¢ sinf,sing sinf ,cos 9”)
with @, = P, correspondingto 6" =0 or # =x. Then
~ 271— ™ n " - n " . " " n
| HNQUE(PLQuidse. = [ [ HIQu@" 0K (P Qu(¢" 0 singdo’ do
27T 1 " - " "
= [ HYQu(¢ cos™ ) K(Pu, Q9 cos™ 2))dzdg
0o Jo1

The singularity in the integrand now occurs along the line 2 = —1 or z =1.
The convergence for applying the method (13) to the above integral is
quite good in our examples. For the entire coefficient, we use

(1, KCy) = (H?, KH?) =~ Ly (H?, KHO)

and we use the standard rule Ij; for the inner product integral. Since I@Hf
is quite smooth, the method is quite accurate with a smaller M = M, (outer
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integral parameter) than is used for the singular integration(inner integral
parameter) M = M;. In general, we choose M > N in our examples. For
more details, see [3, pp. 89-90].

The integral for un(X), X € Q, is evaluated using I, to approximate
(11). Note that when X ¢ I, the integration kernel is smooth; but when X
approaches the boundary, the integrand is increasingly peaked. This means
that numerical integration with a fixed M is less accurate as X approaches
['. This is shown in later examples.
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4 Numerical examples

We use the algorithm described in [4] and we choose three kinds of surfaces
in R3. The true solutions are from the following:

u o= 1

w o=

o= a2ty + 2

u' = e®cosy+e’sina

5 _ 2 2 2\—1
w o= ((z=5)"+(@y—4)"+(z-3))

EXAMPLE 1 Let I' = U, the unit sphere, 2?2 +y%+42? =1. We calculate
the error u — uy , in which the degree of the approximating polynomial is 4,
the integration parameters for calculating the Galerkin coefficient are: inner
integration parameter M; = 32 and outer integration parameter M, = 16. In
Table 1, the first error column is based on the boundary function !, and the
second, on u’. Both have an accurate solution, and we do not need a higher
degree of approximation. Note that for v = u!, the errors in the table are
entirely due to the numerical integration of the various inner products, and
the numerical integration of u* as defined by (13).

Table 1. I' = Unit sphere
T y 2 ul —ul u® —uj
0.0000 | 0.0000 | 0.0000 || —1.408D — 06 | —1.992D — 07
0.1000 | 0.1000 | 0.1000 || —1.408D — 06 | —2.131D — 07
0.2500 | 0.2500 | 0.2500 || —1.408D — 06 | —1.465D — 07
0.5000 | 0.5000 | 0.5000 || —2.507D — 06 2.602D — 06

EXAMPLE 2 Let I' be the ellipsoid

() () -
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We still use M; = 32, M, = 16 for calculating t_he Galerkin coefficients.
First, we calculate the Laplace expansion for v®(M (X)), for X € T, on

unit sphere, to see how the Laplace coefficients decrease as IV increases. See
Table 2.

Table 2. Maximum Laplace coefficients for u = u® with N =8

degree I | the maximum coefficient for degree I
0 1.1082094548 D + 00
6.6129416332D — 02
1.3768464426 D — 01
—1.1407979356 D — 02
8.6900303697D — 03
4.5775822458 D — 04
1.3675609828 D — 03
8.3698632603D — 05
2.6810746805D — 04

O ~J| O U = | W| DN —

Second, we want to calculate uy(X), X € Q. When X approaches the
boundary I', the integrand becomes increasingly ill-behaved; and we need
to increase the degree N of the approximation and the integration parame-
ter(say M) for getting un(X), in order to have sufficient accuracy near the
boundary. For this example, the point with the largest error at which we
evaluated uy(X) was (0.7,0.7,0.7). In Table 3, the first error column is
based on N = 4 with an integration parameter M = 32, and the second
error column is based on N =6, M = 64.

Table 3 shows an increase in accuracy when the approximation degree is
increased. For different functions u, we need different degrees in order to have
comparable sized error. This can be seen in comparing Table 3 and Table 4
Finally, we show in Figure 1 how the error behaviour varies with the approxi-
mation degree. In the graph, the solid line ‘-’ is the maximum of the absolute
value of the errors among the 4 points (0,0, 0),(0.1,0.1,0.1),(0.25,0.25, 0.25)
and (0.5,0.5,0.5) for u = u®; the star line ‘*’ is that for v = u'; and the

circle line ‘o0’, is that for u = u?.
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Error behaviour for testing functions ul,u3,u5 with approximation deg ree increased
()] 16 T T T T T T

[N
N

[y
N

[any
o

Maximum of the absolute value of the errors in -log scal

degree

Figure 1

Table 3. The error for the case of u = u' on the ellipsoid

T Yy z 111—11411 lll—llfli

0.00 | 0.00 | 0.00 || —9.876D — 05 5.878D — 06
0.10 | 0.10 | 0.10 || —9.844D — 05 5.809D — 06
0.25]0.25 ] 0.25 || —8.664D — 05 3.337D — 06
0.50 | 0.50 | 0.50 8.048D — 05 | —2.641D — 05
0.70 | 0.70 | 0.70 7.435D — 04 | =7.526D — 05
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Table 4. The error for the case u = u® and u = u® on the ellipsoid

T Yy z u? —uj u’ —ud
0.00 | 0.00 | 0.00 1.652D — 05 7.107D — 07
0.10 | 0.10 | 0.10 1.606D — 05 7.263D — 07
0.25{0.25 ] 0.25 || =9.898D — 07 2.301D — 07
0.50 | 0.50 | 0.50 || —2.080D — 04 | —4.309D — 06

If we define I" to be the ellipsoid

(g () -1

it is more ill-behaved than E1 in the sense of being more thin and narrow in

shape. Consequently the accuracy is worse for comparable values of N. This
is shown in Table 5 which uses N =7, M = 32.

Table 5. Errors for ellipsoid (E2)

T Yy z u? —u? u’ —u?

0.00 | 0.00 | 0.00 | —2.067D — 01 | 1.686D — 04
0.10 | 0.10 | 0.10 || —2.066D — 01 | 1.788D — 04
0.250.25 | 0.25 || —2.056D — 01 | 1.876D — 04
0.50 | 0.50 | 0.50 | —2.073D 401 | 1.834D — 04

Now if we increase the degree of the approximation (N = 9) and the
integration parameter(M = 64) for calculating un(A), A € Q, we obtain
better results, as shown in Table 6.

Table 6. Improved errors for ellipsoid (E2)

T Yy z u? — ug u’ — ug

0.00 | 0.00 | 0.00 || 6.650D — 02 | —5.576D — 05
0.10 | 0.10 | 0.10 || 6.648D — 02 | —5.988D — 05
0.25 ] 0.25 | 0.25 || 6.559D — 02 | —6.356D — 05
0.50 | 0.50 | 0.50 || 5.272D — 02 | =5.259D — 05
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EXAMPLE 3 We use a peanut-shaped region, based on the ovals of Cassini.
[' is defined by

R= \/COS(29) + \/a + 1 —sin(26)?
(x,y,2) = R(sin# cos ¢, 2 sin § sin ¢, cos )

The larger « is, the better is the behaviour of the solution procedure, based
on comparing the results in Table 7 and Table 8. Figures 2 and 3 are the
cross-sections in the zz-plane with o = 0.8 and a = 0.1 respectively. Also,
for both the @ = 0.8 and o = 0.1 cases, function u® gives smaller errors than
function u* does, since u* varies greatly and more rapidly over some sections
of this region.

Table 7. «a = 0.8 for “peanut” region
x Yy z ut —uj u’ —ug
0.00 | 0.00 | 0.00 || —8.958D — 06 | 3.566D — 07
0.10 | 0.10 | 0.10 || —2.554D — 05 2.882D — 07
0.25]0.25]0.25 || —=1.613D — 04 | —1.130D — 06
0.00 | 0.00 | 0.30 || —1.634D — 05 7.020D — 07
Table 8. «a = 0.1 for “peanut” region
T Yy z ut — ug u® — ug
0.00 | 0.00 | 0.00 || =7.256D — 05 | —3.609D — 06
0.00 | 0.00 | 0.40 || —2.041D — 04 | —1.313D — 05
0.80 | 0.80 | 0.80 || —4.001D — 04 | 7.169D — 05
0.03 | 0.06 | 0.04 || —8.324D — 05 | —3.498D — 06
0.07 | 0.14 | 0.10 || —1.494D — 04 | —4.669D — 06
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EXAMPLE 4 Finally, we define a heart-shaped region:
(x,y,2) = R(2sinf cos ¢, sin  cos ¢, cos §)

R(z,y,2) =2— (1+100(z + 1)*)7", (2,9,2) €U

In Table 9, the first error column is based on using the boundary function
u'; and the second and third error columns are based on »® with N = 4
and N = 8 respectively. Once we choose sufficiently large inner and outer
integration parameters M; and M,, for calculating the Galerkin coefficients,
(for example: M; = 32 and M, = 16),the accuracy of the error depends on

the approximation degree V.

Table 9. Using different boundary functions for testing error

T Y 2 u' —u} u® — uj u® — uj
0.10 | 0.10 | 0.10 || —8.724D — 05 | —1.159D — 04 | —6.187D — 06
2.00 | 0.00 | 0.00 | =2.370D — 05 | 2.891D — 05 | —2.728D — 06
0.00 | 1.00 | 0.00 || =9.478D — 05 | —2.213D — 05 | —6.197D — 06
2.00 | 0.00 | 1.00 || —2.903D — 05 | —1.516D — 04 | —4.301D — 06
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