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QUADRATURE OVER THE SPHERE
�

KENDALL ATKINSON
�

AND ALVISE SOMMARIVA �
Abstract. Consider integration over the unit sphere in ��� , especially when the integrand has singular behaviour

in a polar region. In an earlier paper [4], a numerical integration method was proposed that uses a transformation
that leads to an integration problem over the unit sphere with an integrand that is much smoother in the polar regions
of the sphere. The transformation uses a grading parameter � . The trapezoidal rule is applied to the spherical
coordinates representation of the transformed problem. The method is simple to apply, and it was shown in [4] to
have convergence �	��
����� or better for integer values of ��� . In this paper, we extend those results to non-integral
values of ��� . We also examine superconvergence that was observed when ��� is an odd integer. The overall results
agree with those of [11], although the latter is for a different, but related, class of transformations.
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1. Introduction. In the earlier paper [4] a quadrature method for the sphere was intro-
duced to deal with an integrand that is singular at either the north or south pole of the sphere.
The present paper addresses some of the conjectures that were left unanswered in that earlier
paper.

The earlier paper studied the more general problem of quadrature over a smooth surface�
,

(1.1) ��������� � � �!�#"�� $ �&%
in which

�
is the image of a smooth mapping defined on the unit sphere ')(+*�, ,

(1.2) - ./'1032405�6798;:�7 �
Using this mapping the quadrature problem reduces to that of integration over ' ,

(1.3) ���#<&�=� �?> <@��"�� $ � %
and that is the case we address here. We assume < is several times continuously differentiable
over the unit sphere ' , with the precise order of differentiability to be specified later. In the
following section we define the numerical method and we give the main results of the paper.
Subsequent sections deal with the proofs of those results.

This problem has also been studied by A. Sidi [11], and some of our tools are closely
related to those used in his paper. In [11] Sidi develops a class of single variable transforma-
tions to improve the behaviour of the integrand in (1.3). This class is denoted as the “extended
class ACB ”, or “class A�B ” for short, and it is an extension of that developed earlier in [9]. A
particular member of this class that is studied in [11] is the D9EGF B -transformation, and the nu-
merical examples there are done with this transformation. Some of the tools used in Sidi’s
paper [11] are similar to ones we use, although there are differences as well because our
transformation does not belong to the class he addresses. The overall asymptotic error resultsH
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that we give are, in the end, the same as his, even though the underlying transformations are
different. Our results are not as complete as those of Sidi, due in part to the lack of needed
mathematical tools as compared to those developed in [11] for the class A B transformations
analyzed there.

2. The numerical method. In spherical coordinates this integral (1.3) can be written as���#<&��� �JIK �ML9IK <N��OQPRD?STD9EGFVUXWYDZE�F[STDZE�FVUXW9OQPRD U/�XD9EGF\U=$]S[$RU
Rather than approximating this integral directly, we begin by introducing a transformation^ ./' 0�2&05�6798;:�7 ' . With respect to spherical coordinates on ' ,
(2.1)^ .R"_�`��O�P/D?STDZE�FVUXW9D9E�F[S[D9EGFVU?W9O�P/D UR��a6cb"d� ��OQPRD?STDZE�F�e�U?W9D9EGF[STDZE�FfegU?W9O�P/D UR�h O�P/D L U[iMDZE�F L egU jlk ��SCW9UR�
In this transformation, monqp is a ‘grading parameter’. The north and south poles of ' remain
fixed, while the region around them is distorted by the mapping.

The integral �f��<&� becomes

(2.2) ���#<&�=� �X> <sr ^ � b"��utovRwxr b"ytz$ �[{%
with v w r b"|t the Jacobian of the mapping

^
,

(2.3) v wxr b" t �`} ~!� k ��S�WZUR�\�s~!� k �#S�WZU/�Q}R� DZE�F L e 240 U���m�OQPRD L UTiJD9E�F L UR�� DZE�F L egUTiMO�PRD L U �f��
In spherical coordinates,

(2.4)

���#<&�=� � IK DZE�F L e 2&0 U��#m@O�P/D L UTiMD9EGF L UR�� DZE�F L egU[iJOQPRD L U � �� � LYIK <o��� WZ�gWY�R�V$]S[$RU��� W9��W3���� ��OQPRD?STD9EGFfe&UXW9D9EGF[STD9EGFfe�U?W9O�P/D UR�h D9EGF L e�UTiMO�PRD L U
For ��nqp , let ���l����� , and S �z��UQ�T���/�

For a generic function � , introduce the bivariate trapezoidal approximation� IK � L9IK �&��D9EGFVU?W9O�P/D UXWYDZE�F[S�W9O�P/D?Sg� $]S[$RUN�l� L 8���� K3� � L 8�� � K � � �&��D9EGF\U � WYO�PRDXU � W9D9EGF[S � W9OQPRD?S � �
in which the superscript notation � � means to multiply the first and last terms by 0L before
summing. Apply this to (2.4). Note that the integrand is zero for U����XW9� and that the
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integrand has period � � in S . Therefore

(2.5)

� IK � LYIK �g�#DZE�FVUXWYO�PRDXUXW9D9EGF[S�WYO�PRDfS��X$/ST$U�¡� L 8 2&0���� 0 L 8�� � 0 �g�#DZE�F\U � W9O�P/D U � W9D9E�F[S �WYO�P/D?SX�¢� j�£ 8�&��D9EGFVUXWYO�P/D UXW9D9E�F[SCWYO�P/D?Sg��� D9E�F L e 2&0 U � m@O�P/D L UTiMDZE�F L U �� D9E�F L e�UTiMO�P/D L U � �� <N��� W9�gWY��
with �#� WZ�gW3�� as in (2.4).

When � m is an integer, we were able in [4] to show an accelerated rate of convergence
for this numerical integration of (1.3), as follows.

THEOREM 2.1. For the grading parameter m in the integral (2.4), assume m¤ndp and � m
is a positive integer. Introduce ¥ �§¦ � m]W � m even� mVi�pRW¨� m odd

Assume < is

¥
-times differentiable with <�©«ªQ¬	 k 0 �®'y� , the space of Lebesgue integrable

functions on ' . Then the error in approximating (1.3) by (2.5) satisfies

(2.6) � 5 £ 8 �l¯+�#� ª �
We left some questions unanswered in the earlier paper and two of those are addressed

in this paper.° First, what happens when � m is not an integer.° Second, when �m is an odd integer, what is the actual rate of convergence? We
observed in [4] a much faster rate of convergence in such a case.

The most important tool used in understanding both of these questions is the Euler-MacLaurin
expansion (e.g. see [3, p. 285], [10, Appendix D]) and its generalization in Lyness and
Ninham [6]. A modification of the latter is used in answering the first question given above,
and the regular Euler-MacLaurin expansion is used in exploring the second question. We
present theorems that generalize the above Theorem 2.1, demonstrating them in later sections.

THEOREM 2.2. Assume the grading parameter m satisfies p²±1mJ±³� , ml´�µp¶«· . Let

¥ �¸p¹i)º �m¢» , with º �m¢» denoting the integer part of �m . Assume < is

¥
-times differentiable

with all

¥
th-derivatives of < belonging to k 0 ��'y� . Then

(2.7) � 5 £ 8 �q¯ � � L e �
After giving a proof in Section 3, we indicate how the theorem may be extended to other
larger non-integral values of � m . We further note that this theorem corresponds to Theorem
4.3 in [11], although the latter is for a different class of transformations.

THEOREM 2.3. Assume ms�¼p¶«· or m½�¾� ¶«· or m½�À¿?¶ · and let

¥ �ÂÁRm . Assume < is

¥
-times differentiable with all

¥
th-order derivatives of < belonging to k 0 ��'y� . Then

(2.8) � 5 £ 8 �q¯Ã���?Ä e �
Again, following the proof in Section 4, we indicate how the theorem can be extended to
other cases in which �m is an odd integer. This theorem also agrees with Theorem 4.3 in [11]
for the transformations covered there.
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We remark on the differentiability assumptions about < over ' . Suppose < is a func-
tion defined on only ' , and suppose all derivatives of < of order Å ¥

, with respect to local
coordinate systems on ' , are continuous. Then it is known that < can be extended to some Æ -
neighborhood of ' with preservation of the differentiability. In the following theory, without
loss of generality, we assume that the integrand < is defined on an Æ -neighborhood of ' for
some ÆÈÇÉ� . Thus we treat <È��� W9��W3�� as a differentiable function of three variables, not two.

As in [4], we decompose the calculation of the error � 5 £ 8 into two portions:

(2.9)

�f��<&� 5 £ 8 � � IK D9EGF L e 240 U � m@O�PRD L UTiMDZE�F L U �� D9EGF L e�UTiMO�P/D L U � �� � L9IK <N��� W9�gWY��¹$/ST$U
5 � 8 240���� 0 D9EGF L e 240 U � � m@OQPRD L U � iMD9EGF L U � �� D9EGF L e�U � iJOQPRD L U � � �� � L9IK <È��� � WZ� � WY� � �\$/S
i|� 8 240���� 0 D9EGF L e 240 U � � m@OQPRD L U � iMD9EGF L U � �� D9EGF L e�U � iJOQPRD L U � � ���ÂÊË � LYIK <È��� � WZ� � W3� � �Ì$]S 5 � L 8�� � 0 <È��� �¢Í � W9� �¢Í � W3� �¢Í � �ÏÎÐ

The last portion is the trapezoidal error for a periodic integral over º �XWY� �g» , and it is
straightforward to deal with if < is assumed sufficiently differentiable, obtaining the correct
order of convergence for � 5 £ 8 . More precisely, with respect to the integration variable S ,
the integrand is a smooth differentiable periodic function over º �?WY� �g» . In the remainder of
this paper, we consider only the first portion of the error, that of the trapezoidal rule applied
over �NÅ�U¤ÅÉ� .

3. Convergence with � m non-integral. The key tool we use is a modification of a result
of Lyness and Ninham [6]. The proof of the modification (Lyness [7]) is based on recent tech-
niques developed in Monegato and Lyness [8]. We use mostly the notation of [6], specializing
the results in it to our situation. Consider approximating the integral�N� � 0K ~x��Ñ?��$RÑ
with ~x��Ñ?� having the form ~x��Ñ?�Ò��Ñ?Ó[�9p 5 Ñ?�ZÔT����Ñ?�(3.1) ��Ñ?ÓÕ K ��Ñ?���`�up 5 Ñ?� Ô Õ 0 ��Ñ?�(3.2)

with �M±1ÖCW ×Ø±Ùp . We assume �C��Ñ?� is Ú -times continuously differentiable on º �XWQpQ» for
some Úµn¡p . Consider the error in the trapezoidal rule applied to � ,

(3.3) Û B � pÜ B�� � K � � ~ÞÝ �ÜÉß 5 � 0K ~à��Ñ?��$Ñ
Then Û B �âá�ã � K Õ ©

ã ¬K ���R�äå æ �¹� 5 Ö 5 ä �Ü Óèç ã ç 0iéá�ã � K � 5 p��
ã Õ © ã ¬0 �up��äRå æ �V� 5 × 5 ä �Ü Ô ç ã ç 0 iJê�r Ü 2 © Ó¢ç á ç 0 ¬ t!iJê�r Ü 2 © Ô ç á ç 0 ¬ t(3.4)
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In this we use the Riemann zeta function �X� ä � .
From (2.4), the integrand for our application of (3.4) is the function

(3.5) ~x��Ñ?���`��D9E�F���Ñ �C�3� L e 2&0�ë � D9EGF L ��Ñ �C� � � L9IK <N��� W9��W3��o$/S�W �¤ÅMÑsÅÃp
where ë ��ìZ��� �9p 5 m �]ì4iMm��ì e 5 ì4ilp¢� ����� WZ�gWY�R��� ��O�P/D?STDZE�Ffeí��Ñ �C�&W9D9E�F[S[D9EGF�eí��Ñ �C�4W9O�P/D4��Ñ �C�3�î D9E�F L e@�#Ñ �C�CiMO�P/D L ��Ñ �C�
and with < assumed sufficiently smooth on an open neighborhood of the unit sphere.

Let ï be the fractional part of �m ,ïy�¡�m 5 º � m¢»W �¤±ÉïÈ±¡p
Rewrite our integrand as~x��Ñ?���lÑXð=�Zp 5 Ñ?� ð Ý DZE�F���Ñ �C�Ñ��up 5 Ñ?� ß ð �#D9E�F|�#Ñ �C�Y� L e 2 ð 2&0 ë �#D9EGF L ��Ñ �C�3� � LYIK <È��� W9�gWY��È$]S�lÑ ð Õ K ��Ñ?���`�up 5 Ñ?� ð Õ 0 ��Ñ?�
We must show that the function Õ K ��Ñ?� is

¥
-times differentiable with Õ K ��Ñ?� locally integrable

about Ñ½�d� ; and similarly with respect to Õ 0 ��Ñ?� about Ñs�Âp . We treat separately the cases
of p|±ÉmÈ±qpR¶ · and p¶«·o±+mÈ±+� .

3.1. Case 1: py±ÉmÈ±¡pR¶ · . We have º � m¢»��q� and �mz�q�¹iJï ; and then~x��Ñ?�Ì�+ÑXð=�9p 5 Ñ?� ð Ý D9EGF���Ñ �C�Ñy�9p 5 Ñ?� ß ð D9EGF���Ñ �C� ë ��DZE�F L �#Ñ �C�Y� � L9IK <È��� W9��W3��o$/S�+Ñ ð Õ K ��Ñ?�Ò�)�Zp 5 Ñ?� ð Õ 0 ��Ñ?�
where Õ K ��Ñ?�Ò�)�Zp 5 Ñ?� ð Ý D9E�F���Ñ �C�Ñ��up 5 Ñ?� ß ð DZE�F���Ñ �C� ë � D9E�F L ��Ñ �C� � � LYIK <È�#� WZ�gWY�R��$]S
and similarly so for Õ 0 ��Ñ?��¶ Note thatD9E�F���Ñ �C�Ñ��up 5 Ñ?� nÉ�íW �NÅÉÑ½Åqp
and then easily Ý D9EGF���Ñ �C�Ñ|�9p 5 Ñ?� ß ð
is analytic on º �XWèp�» .
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To obtain an error of size ¯ � Ü 2 L e � , as asserted in (2.7), we must take Úñ�_¿ in (3.4).
The error formula becomes

(3.6)

Û)� L�ã � K Õ ©
ã ¬K ���R�äå �V� 5 ï 5 ä �Ü ð9ç ã ç 0i L� ã � K � 5 p¢�

ã Õ © ã ¬0 �up��äRå �V� 5 ï 5 ä �Ü ðZç ã ç 0 i�¯ � Ü 2 , �
Using this to show Û)�¡¯d� Ü 2 L e � requires:

1. Õ K ���/�=�l� , Õ 0 �Zp¢�=�¡� ;
2. Õ K WZÕ 0 lò L in neighborhoods of Ñ��Ø� and ÑJ�Ùp , respectively, and Õ © � ¬K ���/�o�Õ © � ¬0 �up¢�=�¡� for �È�)pWY� ;
3. Õ ©G,Y¬K WZÕ ©G,Y¬0  k 0 in neighborhoods of Ñ!�¡� and Ñ��dp , respectively.

The first condition is immediate.
We give arguments for only Õ K ��ìZ� , but analogous arguments hold for Õ 0 ��ìZ� . To find the

derivatives of Õ K ��Ñ?� , we must differentiate the product

(3.7) �up 5 Ñ?� ð Ý DZE�Fy��Ñ �C�Ñ��up 5 Ñ?� ß ð DZE�Fy��Ñ �C�f�C��Ñ?�uóJ��Ñ?�
where �C��Ñ?��� ë ��D9EGF L ��Ñ �C�Y�óJ��Ñ?��� � LYIK <N��� WZ�gW3���$]S(3.8)

We need to consider the behaviour of the derivatives around the endpoints of º �XWèp�» . Since the
first two terms in (3.7), �up 5 Ñ?� ð Ý D9E�F���Ñ �C�Ñy�up 5 Ñ?� ß ð
are analytic in a neighborhood of Ñ���� , we need consider only the derivatives of the product

(3.9) D9E�F���Ñ �C�?����Ñ?�ZóJ��Ñ?�
Recall ë ��ìZ�Ò� �up 5 m � ì4iJm��ì e 5 ìCilp¢� ��

We need the derivatives of����Ñ?�Ò� ë ��DZE�F L ��Ñ �C�3�[� ë � 0L º�p 5 O�PRDC�#�;Ñ �C�u»��
Use the following to do so.����Ñ?�Ò� ë ���T��Ñ?�Y�gW �g��Ñ?��� 0L ºôp 5 O�P/D4�#� Ñ �C�®»� � ��Ñ?�Ò� ë � �õ�|��Ñ?�Y�/� � ��Ñ?�� © L ¬ ��Ñ?�Ò� ë © L ¬ �õ�|��Ñ?�Y�&�õ� � ��Ñ?�Z� L i ë � �õ�z��Ñ?�9�]� © L ¬ ��Ñ?�(3.10) � ©G,Y¬ ��Ñ?�Ò� ë ©�,9¬ æ ��� � � , iM¿ ë © L ¬ æ � � æ � © L ¬ i ë � æ � ©G,Y¬� © Ä ¬ ��Ñ?�Ò� ë © Ä ¬ æ ��� � � Ä iMö ë ©G,9¬ æ ��� � � L æ � © L ¬iJ¿ ë © L ¬ æ rQ� © L ¬ t L iJÁ ë © L ¬ æ � � æ � ©G,Y¬ i ë � æ � © Ä ¬
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These are special cases of the Faa di Bruno [15] formula for the � th derivative of a composite
function:

(3.11)

~ 8 ë �õ�&��Ñ?�9��� � � � å÷ 0 å æQæèæ ÷ 8 å � ~xø � ø ë � �õ�&��Ñ?�Z�� Ý ~!�g��Ñ?�p å ß ��ù Ý ~ L �&��Ñ?�� å ß � � æèæQæ Ý ~ 8 �g��Ñ?�� å ß �3ú
with

÷
a multi-integer satisfying÷ �`� ÷ 0 Wè¶Q¶Q¶QW ÷ 8 �&W all

÷ ��n��} ÷ }� ÷ 0 i æèæQæ i ÷ 8÷ 0 i�� ÷ L i æèæQæ iJ� ÷ 8 �l�
Next, in general for an integer ûzÇÉ� ,� ©ôüÏ¬ ��Ñ?���Àý¸þ 0L �Ï�;�C� ü DZE�Fy��� �&Ñ?�gWÿû oddþ 0L �Ï�;�C� ü O�P/D4�#� �&Ñ?�gW¸û even

For the function ë ��ìZ� ,ë � ��ìZ����� 0 ì e 2&0 iJì���� Ü	ä ìZ���Rì��	�
� äèÜ ê;ê�ìZ�����VìZ���/� ì e 2&0�#ì e 5 ì4ilp¢� ��ë © L ¬ ��ìZ��� � L ì e 2 L iJì���� Ü	ä ìZ���Rì��	�
� äèÜ ê;ê�ìZ�����VìZ���/� ì e 2 L�#ì e 5 ì4ilp¢� �
Since m|�)p�i 0L ï for the current case, we have that ë © L ¬ ��ìZ� is singular at ìí�l� . For a generalm not an integer,

(3.12) ë © � ¬ ��ìZ��� � � ì e 2 � i ì���� Ü	ä ìZ���/ì��	�
� äèÜ ê;ê�ìZ�����VìZ���/�!ì e 2 ���ì e 5 ì4i�p�� © L � ç ,Y¬ � L W ÷ nÃp
Combining these results for derivatives of � and ë , we have� � ��Ñ?�Ò�¡¯)r��D9EGF����&Ñ?�9� L © e 2&0 ¬ ç 0 ts�¡¯)rR�#D9EGFy�#�&Ñ?�9� L e 2&0 t�¡¯ r ��D9EGF����&Ñ?�9� 0 ç4ð t� © L ¬ ��Ñ?�Ò�¡¯)r��D9EGF����&Ñ?�9��� � ��� L © e 2 L ¬ ç L Í L © e 2&0 ¬ � t½�q¯_r/��D9EGF����&Ñ?�3� L e 2 L t�¡¯ r ��D9EGF����&Ñ?�9� ð t(3.13)� ©G,9¬ ��Ñ?�Ò�¡¯ r ��D9EGF����&Ñ?�9� � � ��� L © e 2 ,Y¬ ç , Í L © e 2 L ¬ ç 0 Í L © e 240 ¬ ç 0 � t �l¯ r �#D9E�F|�#�&Ñ?�Y� L e 2 , t�¡¯ r ��D9EGF����&Ñ?�9� 2&0 ç4ð t

Note that 5 p|± 5 p;i|ïo±É� . Thus �4©G,Y¬���Ñ?� is integrable over º �XWèp�» . Also, �C© L ¬���Ñ?� is continuous
on º �?WQp�» with �4© L ¬��#�R�=�q�&© L ¬��up��=��� .

What are the derivatives of óJ��Ñ?�Ò� � L9IK <N��� W9��W3��È$/S
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where ��� WZ�gW3���� ��OQPRD?STDZE�Ffeí��Ñ �C�&WYDZE�F[S[D9E�Ffe@��Ñ �C�4W9OQPRD4��Ñ �C�9�h � ��Ñ?�� r O�PRDfS[D9EGF 0 ç4ð � L ��Ñ �C�4W9D9EGF[STD9EGF 0 ç4ð � L ��Ñ �C�4W9O�P/D4��Ñ �C� th � ��Ñ?�� ��Ñ?���¡DZE�F L e@��Ñ �C��iJOQPRD L ��Ñ �C���¡D9EGF L ç4ð ��Ñ �C��iMO�PRD L �#Ñ �C�
By the chain rule, ó � ��Ñ?�Ò� � LYIK � < 0 $�$RÑ i�< L $�$Ñ i�< , $/�$RÑ�� $]S
To obtain the behaviour as a function of Ñ , we useÊ��Ë $R�$Ñ$�$Ñ Î���Ð �l�yDZE�Ffe 240 ��Ñ �C��� m�OQPRD4�#Ñ �C�h � ��Ñ?�5 D9E�F���Ñ �C�XD9E�F��#�;Ñ �C��� m�D9E�F L e 2 L ��Ñ �C� 5 p! � � ��Ñ?� h � ��Ñ?� " � O�PRDfSDZE�F[S �$]�$RÑ � 5 �yDZE�F���Ñ �C�#� ph � ��Ñ?� i O�P/D L ��Ñ �C� � m@D9EGF L e 2 L �#Ñ �C� 5 p  � ��Ñ?� h � ��Ñ?� "
For our case of �mz�q�¹iJï ,

Ê��Ë $R�$Ñ$R�$Ñ Î���Ð �+��D9EGF ð � L ��Ñ �C�#� m@OQPRD4��Ñ �C�h � ��Ñ?� 5 DZE�Fy��Ñ �C�?DZE�Fy��� Ñ �C� � m@DZE�F ð ��Ñ �C� 5 p  � � ��Ñ?� h � ��Ñ?� " � OQPRD?SD9EGF[S ��l¯ r DZE�F ð � L ��Ñ �C� t � O�PRDfSDZE�F[S �$/�$RÑ � 5 �yDZE�F���Ñ �C�#� ph � ��Ñ?� i OQPRD L ��Ñ �C� � m@D9EGF ð ��Ñ �C� 5 p  � ��Ñ?� h � ��Ñ?� "�l¯+��D9E�F���Ñ �C�3�
For the second derivative,ó © L ¬ ��Ñ?��� � LYIK �®< 0 Í 0 Ý $�$RÑ ß L i�< L Í L Ý $R�$RÑ ß L i�< , Í , Ý $]�$RÑ ß Li��< 0 Í L $�$RÑ $�$Ñ i��< 0 Í , $�$RÑ $]�$RÑ i��< L Í , $�$Ñ $/�$RÑi|< 0 $ L �$RÑ L i�< L $ L �$Ñ L i�< , $ L �$Ñ L � $]S
For the present case that py±+mo±qp¶«· , we can continue with this to show that

(3.14) ó © üÏ¬ ��Ñ?���q¯dr/º D9EGF���Ñ �C�®» � � �
� ð � L 2 ü ç 0 Í K � tÈW û¹�¡�XWèpWY�XW9¿
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to show the singular nature of óJ© L ¬ and ó ©G,Y¬ .
Now to (3.7), we calculate the derivatives of the productD9EGF���Ñ �C�f����Ñ?�ZóJ��Ñ?�

Using Leibniz’s formula,
(3.15)$ ü$RÑ ü º DZE�F���Ñ �C�f�C��Ñ?�uóJ��Ñ?�Ï»C� �ø $fø � ü û å% 0 å % L å % , å $	$ ù$RÑ $ ù º D9E�F|�#Ñ �C�u» $	$ �$RÑ $ � º ����Ñ?�Ï» $	$ �$RÑ $ � º óJ��Ñ?�Ï»
where % �À� % 0 W % L W % , � , % � nÃ� . There are 0L ��û=ilp¢�g��û�iM�R� terms in this expansion. Con-
sider û[�l�XW9¿ .° û[�l� . The corresponding values of % are��� WY�XW9�/��Wè�ZpWQpRW9�/�?W¢�ZpRW9�?WQp¢�fW¢���XW3� WY�R��Wè�#�XWèpWQp��fWè���?W9�?WY��° û[��¿ . The corresponding values of % are��¿XWY�XWY�R�fWè��� WQpRW9�/��Wè�#�XW9�?WQp¢�fW¢�upW3� WY�R��Wè�ZpWèpWQp���W(3.16) �9pWY�XW3��fWè�#�XW9¿?W9�/��Wè���?WY�XWQp¢�fW¢���XWèpW3���Wè�#�XWY�XW9¿/�
It is easily checked that all product terms in (3.15) with û¤�§� are continuous, even thoughó © L ¬���Ñ?� is singular.

For ûz�d¿ , we need to look only at terms containing ��©G,Y¬���Ñ?�Vº % �§���?W9¿?W9�R�®» or ó © � ¬���Ñ?� ,÷ �Ù�XW9¿	º % � �upRW9�?WY��fW¢���XWèpW3���W¢���?W9�XWY¿R�®» , in order to check for integrability. It is easily
checked that in these cases the corresponding terms in (3.15) are integrable. Thus Õ ©G,Y¬K  k 0in a neighborhood of Ñ½�Ã�X¶ An exactly analogous proof works in examing the behaviour ofÕ 0 ��Ñ?� about Ñ �_p . This completes the proof of Û_�q¯ � Ü 2 L e � for the case of py±ÉmN±¡p¶«· .

3.2. Case 2: p¶«·o±+mÈ±+� . We have º � m¢»��¡¿ and �mz�¡¿[iJï ; and then~x��Ñ?���lÑ ð �up 5 Ñ?� ð Ý D9EGF��#Ñ �C�Ñ��up 5 Ñ?� ß ð D9E�F L �#Ñ �C� ë � DZE�F L ��Ñ �C� � � LYIK <È��� WZ�gWY�R�o$]S�lÑ ð Õ K ��Ñ?���)�Zp 5 Ñ?� ð Õ 0 ��Ñ?�Õ K ��Ñ?�Ò�)�Zp 5 Ñ?� ð Ý DZE�Fy��Ñ �C�Ñ��up 5 Ñ?� ß ð D9EGF L ��Ñ �C� ë ��D9EGF L ��Ñ �C�3� � L9IK <È��� W9��W3��È$/S
and similarly for Õ 0 ��Ñ?��¶To obtain an error of size ¯_� Ü 2 L e � , we must take Ú �ÂÁ in (3.4). The error formula
becomes

(3.17)

Û_� ,�ã � K Õ ©
ã ¬K ���/�äRå �V� 5 ï 5 ä �Ü ðZç ã ç 0i ,� ã � K � 5 p¢�

ã Õ © ã ¬0 �Zp¢�äRå �¹� 5 ï 5 ä �Ü ðZç ã ç 0 i�¯d� Ü 2 Ä �
Using this to show Û)�¡¯d� Ü 2 L e � requires:

1. Õ K �#�R�=�lÕÒ�K ���/����� , Õ 0 �Zp¢�=�+ÕÌ�0 �up��=��� ;



ETNA
Kent State University 
etna@mcs.kent.edu

QUADRATURE OVER THE SPHERE 113

2. Õ K WZÕ 0 xò|, in neighborhoods of Ñ �¡� and Ñ��dp , respectively;
3. Õ © Ä ¬K WZÕ © Ä ¬0  k 0 in neighborhoods of Ñ!�¡� and Ñ��dp , respectively.

Again, the first condition is straightforward, because of the presence of D9EGF L ��Ñ �C� in the for-
mulas for Õ K ��Ñ?� and Õ 0 ��Ñ?� .In analogy with the first case, we must consider the derivatives of

(3.18) DZE�F L ��Ñ �C�f�C��Ñ?�uóJ��Ñ?�
Note that it contains the higher power D9E�F L ��Ñ �C� as compared to the D9E�F���Ñ �C� of the first case
in (3.9).

Proceeding as in the previous case,

(3.19) � © � ¬ ��Ñ?�Ò�l¯ r ��DZE�F����&Ñ?�Y� , ç4ð 2 � t W ÷ �_pWè¶Q¶Q¶QWZÁ
ó © ü®¬ ��Ñ?���q¯ r º D9EGF���Ñ �C�®»&� � �
� ð � L 2 ü ç L Í K � t W û¹�¡�XWèpW3� W9¿?WZÁ

showing ó ©G,Y¬���Ñ?� and ó © Ä ¬���Ñ?� are singular at Ñ �¡�X¶ The second condition stated above, thatÕ K WZÕ 0 Mò|, in some neighborhoods of Ñ �`� and Ñ²�Øp , respectively, is satisfied. Simply
use the same approach as in the first case, noting now that in (3.15) the term DZE�F���Ñ �C� is
replaced by D9EGF L ��Ñ �C� . Because of this, all terms arising from (3.16) will be continuous atÑ���� and Ñ��)p .

What remains is to show that Õ © Ä ¬K  k 0 �#�XWèp¢� . Returning to (3.15) for the case û!�ÂÁ ,
the corresponding values of % are��Á?W9�?W9�/��Wè��¿?WQpRW9�R�fW¢�#¿?W9�XWèp¢�fWè��� W3� W9�/��Wè��� WQpRWQp��?W��� W9�?WY�R��Wè�upRW9¿?W9�R�fW¢�ZpRWY� Wèp¢�fWè�ZpWèpWY�R��Wè�ZpW9�?W9¿/�?W�#�XW9Á?W9�/��W¢���XWY¿XWèp¢��W¢���?WY� W3���Wè���?WQpRW9¿R��Wè�#�XW9�?WZÁ]�
Only when we look at terms containing �C© Ä ¬���Ñ?�|º % �¨�#�XWZÁfW9�/�Ï» or ó © ü®¬3��Ñ?� , û �Ø¿?WZÁ½º % ��upRW9�XWY¿R��W¢���XWèpWY¿R��W¢���?W9�XW9Á/�®» , is there any need to check for integrability. It is easily checked
that in these cases the corresponding terms in (3.15) are integrable. Thus Õ © Ä ¬K  k 0 in a
neighborhood of Ñà�`� . An analogous result holds for Õ 0 about Ñà�¾p . This completes the
proof of Theorem 2.2.

How do we generalize this theorem to larger non-integral values of m ? We would again
look at two cases: ÷ ±ÉmÈ± ÷ i 0L and

÷ i 0L ±+mo± ÷ i�p
for some integer

÷
. Then we would generalize the formulas for ��© � ¬ and ó ©ôüÏ¬ . The formula

for ó © üÏ¬ generalizes easily; but that for the composite function ��© � ¬ does not. The latter
requires using the Faa di Bruno formula (3.11), and we have not found any general way of
handling this. It is straightforward to do particular cases, however, and we have suitably
generalized (3.13) and (3.19) for mxq���XW9¿R� and ��¿XW9Á/� . With these results in hand, we then
can examine the Leibniz formula (3.15) and show the needed properties for the functions Õ K
and Õ 0 .

4. Superconvergence with �m an odd integer. In [4] it was observed experimentally
that with < sufficiently differentiable and m|�_p¶«· ,� 5 £ 8 �¡¯¤����'��
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There was no precise estimate of the speed of convergence for the cases my�¡�X¶ · and my�l¿X¶«· ,
although it was clear experimentally that the speed of convergence was very high.

As noted earlier following (2.9), we are considering the trapezoidal error � 5 £ 8 when
approximating

(4.1)
� IK �!��U/��(!��U/�@$U

(4.2)
�!��UR�=� �up 5 m � D9EGF L UTiJm�#DZE�F L egUTiMO�PRD L UR� , � L DZE�F L e 2&0 U(!��U/�Ò� � LYIK <@��� WZ�gW3�� $]S

Here, resorting to the well-known Euler-MacLaurin expansion in its standard form (cf. [3],
[6]), we explain the reason for such superconvergence for the cases my�_pR¶ ·XWè� ¶«· , and ¿X¶«· . Let

¥ �+Á/m , and assume < is

¥
-times differentiable with all

¥
th-order derivatives of < belonging tok �Ï'y� . Without loss of generality, we can assume that < is defined on some Æ -neighborhood

of ' , call it '*) , with < having analogous differentiability properties on '+) . Then we show� 5 £ 8 �q¯Ã���?Ä e �
as stated in (2.8) of Theorem 2.3.

Introduce

(4.3)
ÕT��U/��� D9E�FfegUh D9EGF L e�UTiMO�PRD L U, ��U/��� OQPRD Uh D9EGF L egUTiMO�PRD L U

and then write ��� WZ�gW3��\x' (see (2.4)) as��� WZ�gW3����`��Õz��UR� OQPRD�SCW9ÕT��UR� D9EGF[S�W , ��UR�9�
Since < is sufficiently differentiable over ' ) , we can expand it in a Taylor series about���?W9�?WQp¢� , corresponding to U¾� � , with the series converging in some neighborhood of���?W9�?WQp¢� . Using a Taylor series of order Ú 5 p , we can write, roughly speaking,

(4.4) <@��� W9��W3���� á 240�- Í � Í ��. K- ç � ç �0/ á �
- Í � Í � � - � � � � i21 á ��� WZ�gW3��

with appropriate coefficients � - Í � Í � . The remainder 1 á ��� W9�gWY�� can be written in a variety
of forms, each depending on Ú th-order derivatives of < . Moreover, all derivatives of 1 á of
order ±_Ú equal zero at ��� WZ�gWY�R�z�¼�#�XW9�?WQp�� . Using this expansion, we expand (!��UR� about
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(!��U/�Ò� � LYIK á 240�- Í � Í ��. K- ç � ç �0/ á �
- Í � Í � � - ��UXWYSg�]� � ��UXWYSg�X� � ��UXWYSg� $]S!i � á ��UR�

� á 240�- Í � Í ��. K- ç � ç �0/ á �
- Í � Í � � LYIK � - ��UXW3Sg�]� � ��UXW3Sg�X� � ��UXW3S��X$/S i � á ��U/�

� á 240�- Í � Í ��. K- ç � ç �0/ á �
- Í � Í � Õ - ç � ��U/� , � ��UR� �ML9IK OQPRD - S[D9E�F � S[$]S!i � á ��UR�(4.5)

The remainder
� á ��UR� depends on the Ú th-order derivatives of < and can be written in

an integrated form, � á ��U/��� � L9IK 1 á ��� WZ�gWY�R� $]S
Thus

� á ��U/� is well-defined around UJ�Ù� when the Ú th-order derivatives of < belong tok 0 ��'*)Q� . In addition all derivatives of
� á ��UR� of order ±+Ú equal zero at UÈ�l� .

Denoting by ë the “Beta function” (cf. [1, p. 258]), we note that� I � LK D9EGF - S[OQPRD � ST$]S½� p� ë � 0L �43gilp¢��W 0L ���zilp¢�9�
When 33WÏ� are both even, we have� LYIK DZE�F - STO�P/D � ST$/Ss�l� ë � 0L �53&i�p���W 0L �G�|ilp¢� �
and this integral equals � in all other cases of 33W�� . As consequence,

(4.6) (!��UR�Ò� á 2&0�- Í � Í ��. K- ç � ç ��/ á- Í � even

� - Í � Í � Õ - ç � ��UR� , � ��U/� �JLYIK O�PRD - STDZE�F � ST$/S¤i � á ��UR�
This corresponds to Sidi [11, Lemma 4.1 and Theorem 4.2].

Now let my�dpR¶ ·X¶ Using Mathematica to simplify the calculations,Õ L ��UR���+U , i U76� 5 U ' iM¯¤��U98;�
, ��UR���_p 5 UR,� 5 U76Á i ¿=U ': iM¯¤��U 8 �

Use this in the expansion of (4.6), noting that 3gi�� is always even and thereforeÕ - ç � ��UR�=� � Õ L ��UR�  ù� © - ç � ¬
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with 0L �43gi��/� an integer. Then

(4.7) (!��UR�Ò�<; 0 i=; L U , i=; , U 6 i=; Ä U ' i�¯¤��U 8 �
for suitable >?; -�@ .

Returning to (4.3), we also have

(4.8) �!��UR��� ¿ U L� i · U ÄÁ 5BA U96Á iDC9C U ': � iM¯¤��U98;�
Combining (4.7) and (4.8), we have�!��U/��(!��U/�Ò� � 0 U L i � L U Ä i � , U 6 i � Ä U ' iM¯¤��U 8 �
for suitable constants > � - @ . A similar Taylor expansion holds for Uo�l� . This implies that the
first and third derivatives of �!��U/��(!��U/� are zero at Uo�¡�XW9�í¶

We apply the Euler-MacLaurin formula to (4.1). Since < is ö 5 times differentiable with
all ö :4E -order derivatives in k �Ï'y� , we can conclude that the order of convergence of the
quadrature rule for m|�)p¶«· is ö .

Use an analogous proof when m��À�X¶ · (and assuming < is pè� -times differentiable with
all pè� :4E -order derivatives in k ��'y� ). ThenÕ L ��UR�=��U 6 i U 8ö i pRp4U9FC � 5 U 0 K iM¯¤��U 0Y0 �

, ��U/���_p 5 U96� 5 U 8p¢� 5 pp4U7FpQÁRÁ i ¿íU 0 K: i�¯¤��U 0Y0 �
(!��UR�Ò�<; 0 iG; L U 6 i=; , U 8 i=; Ä U F iÉiH; 6 U 0 K iz¯¤��U 0Y0 �

�!��UR�=� ·@U Ä� iDC U 'p�� i ppèU9Ipèö 5 p¢·@U9FÁ i pp¢� C7C U 0 K¿�R� ÁR� i�¯¤��U 090 ��!��UR�J(!��UR�Ì� � 0 U Ä i � L U ' i � , U I i � Ä U F i�¯¤��U 0 K �
This allows us to prove that � 5 £ 8 �¡¯¤��� 0 K � .

For m!�`¿X¶«· (assuming that < is pQÁ 5 times differentiable with all pèÁ :4E -order derivatives
in k �Ï'y� ) Õ L ��UR�Ò��U 8 5 U9Fö i p C U 0Y0p�� � i ÁR¿@U 0 ,�XpèöR� 5 U 0 ÄÌi�¯¤��U 0 6 �

, ��UR�Ò�_p 5 p� U 8 i pp¢� U F 5 p C�;ÁR� U 090 5 Á/¿Á/¿R� � U 0 , i ¿: U 0 Ä i�¯Ã��U 0 6 �
(!��UR���K; 0 iL; L U 8 iL; , U F iL; Ä U 090 i=; 6 U 0 , i=; ' U 0 Ä;iz¯¤��U 0 6 �

�!��UR��� C U '� 5 ¿íU9IÁ i p : C U 0 K� ÁR� i ·R· A U 0 LÁR¿R�� 5 �XpQU 0 ,Á i A : Á C U 0 Ä: �Rö Á/� iM� U 0 6 iM¯¤��U 0 ' �
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Taken together, this implies that the order of convergence is pèÁ .

We would like to generalize this proof tom|� Ü i 0L W Ü nqp an integer

but we have been able to do so for only a portion of it. The difficulty can be seen in the form of
the Taylor expansions given above. The various functions are neither even nor odd; but their
lower degree terms have the behaviour needed in order to apply the Euler-MacLaurin error
formula. Nonetheless what we have shown is sufficient for practical purposes, demonstrating
that m of this special form is the preferable choice.

5. Conclusion. Although some of the techniques used in this paper are similar to those
used in Sidi [11], they were obtained independently of that paper. A major difficulty with our
transformation

^
of (2.1) has been the integral termóJ��Ñ?��� � LYIK <o��� WZ�gWY�R�V$/S

of (3.8). We have had to be quite careful in the handling of its derivatives, as we did in
obtaining (3.14) of M 3. There is a similar difficulty in Sidi [11, Theorem 4.2], and he has been
able to handle it in a different way, by using the general theory he has developed for the error
analysis of the trapezoidal rule when applied in connection with class A@B transformations
(cf. [11, Theorem 3.1]). See Sidi [14] for an extension of the results of this paper, completed
independently of our present paper. In addition, the papers Sidi [12], [13] also relate to the
numerical method studied in this paper, although again our results are obtained independently
and are somewhat different in approach.

In spite of the difficulty in the error analysis of our transformation
^

, we believe it is a
natural way to grade nodes on the sphere and one that needs to be understood more fully.
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