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THE DISCRETE GALERKIN METHOD FOR 
NONLINEAR INTEGRAL EQUATIONS (*) 

KENDALL ATKINSON AND FLORIAN POTRÀ 

ABSTRACT. Let K be a completely continuous nonlinear 
integral operator, and consider solving x = K(x) by Galerkin's 
method. This can be written as xn = PnK(xn),Pn an or
thogonal projection; the iterated Galerkin solution is defined 
by xn = K(xn). We give a general framework and error anal
ysis for the numerical method that results from replacing all 
integrals in Galerkin's method with numerical integrals. A 
special high order formula is given for integral equations aris
ing from solving nonlinear two-point boundary value prob
lems. 

1. Introduction. Consider the problem of solving the nonlinear 
Urysohn integral equation 

(1.1) x(i)= I K{t,s,x(s))ds, ted. 
Jn 

Denoting this equation by 

(1.2) x = K(x), 

we assume that K is a completely continuous operator from an open 
set D C L°°(Q) into C(fi), with Q a set in R m , some m > 1. We 
will analyze the use of the discretized Galerkin method to solve for the 
fixed points x* of K. 

Let Sh denote a finite dimensional approximating subspace of Loc(Q)i 

with h the discretization parameter. The Galerkin method for solving 
(1.2) is to find the element Xh € Sh for which 

(1.3) (xhiiP) = (K(xh)^), all ^ G Sh. 

This is a well-analyzed method with a large literature; for example, 
see Krasnoselskii (1964), Krasnoselskii-Vainikko, et al. (1972), and 
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18 K. ATKINSON AND F. POTRÀ 

Krasnoselskii-Zabreiko (1984). Recently, we have given a more detailed 
analysis of the Galerkin method, in [6], and some of those results will 
be referred to in the following. 

Assuming Sh is also a subspace of L2(0) , let Ph be the orthogonal 
projection of L2(Q) onto Sh- Then (1.3) can be rewritten as 

(1.4) xh = PhK(xh), xheL™(n). 

After obtaining the approximation Xh to the desired solution x*, define 

(1.5) xh = K(xh), 

which is called the iterated Galerkin solution. For the approximating 
properties of S^, we assume 

(1.6) PhX —• x, as ft —• 0, 

for all x e C{Q). 

Assuming [J — AT'(x*)]_1 exists and is bounded, we can show the 
existence of Xh for all sufficiently small ft, along with its convergence 
to x*. In particular, it can be shown that 

(1-7) | | a f ' - a ! Ä | | < c | | » ' - P f c a ! | | 

(1.8) 
ih | |< c || x* -Phx || 

. M a x f l l s ' - i V t I U n J - P f c l / C V ) * 

where c is a generic constant. This shows the superconvergence of Xh 
to x*, as compared to that of Xh to x*. More details on the resulting 
speed of convergence are given in [6], 

The numerical scheme (1.3) is implemented by letting if) run through a 
basis of Sh- The resulting nonlinear system will involve many integrals, 
both inner products and the integral operator K. When these are 
approximated numerically, a new numerical method results. We will 
analyze that method, to see when the results (1.7)-(1.8) are still valid 
for the solutions obtained from the discretized nonlinear system. 

In the next section we will present an abstract framework within 
which the discrete Galerkin methods can be analyzed. §3 contains some 
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general error estimates for integral equations of the form (1.1), which 
can be used to obtain the actual rates of convergence of the discrete 
Galerkin and the discrete iterated Galerkin methods for a large class of 
problems. In §4 we obtain more specific results for the case where f2 is 
a compact one-dimensional interval and the kernel K(t, s, u) belongs to 
the class foi®, l) defined in [6]. Finally in §5, we give some numerical 
examples which illustrate the theory. 

We note that the results of this paper generalize some previous re
sults obtained in the linear case ([4] and [7]). Although the present 
paper is self-contained, we will often refer for proofs and details to the 
above-mentioned works. 

2. Discrete inner products and projections. As we have 
mentioned in the introduction, the implementation of the Galerkin 
method requires the computation of many integrals connected both 
with the inner product L2(Q) and with the integral operator. The 
numerical integration rules used to this effect may be different. In this 
section we discuss only the problems related to the computation of 
the inner product and the corresponding projection operator. For each 
discretization parameter h > 0 we introduce a numerical quadrature 
formula of the form 

P Rh 

(2.1) / f(t)da{t) = Y,w^f{t3^ 

Here / belongs to a certain space of piecewise continuous functions 
Ch C L°°(Q) that is supposed to contain both C(fi) and Sh- In what 
follows, the subscript h will usually be dropped from Ä ^ w ^ , ^ , 
although implicitly understood. Applying (2.1) to the inner product of 
L2(Q), we have a discrete inner product 

R 

(2.2) (/,^:=E^/fe)^)-
3 = 1 

This discrete inner product is an example of an indefinite inner product. 
For an abstract theory of indefinite inner product spaces, the interested 
reader may consult [8]. However, all properties of (2.2) needed for our 
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purposes are proved directly in [4]. We will use the notation introduce 
in the latter work. 

Let {<pi, <£>2> • • • ? <PNh} be a basis of Sh and let us consider the N xR 
matrix 

(2.3) $ = [wit;)], 1 < i < N, 1 < j < R. 

For all h > 0, assume that 

[HI] R > N 

[H2] Rank ($) = N 

[H3] wj>0, l<j<R 

[H4] <p G Sh and ^ ^ 0 => (p, <p)/l > 0. 

_ Under the above hypotheses there is a unique linear operator Qh : 
Cfc —• Sh defined by 

(2.4) (Qhz, <p)h = (z, <p)h, all (p e Sh. 

It is easily seen that the linear operator Qh is a projection (i.e., 
Q\ —Qh) a n d that it satisfies 

(2.5) (Qhx, y)h = (x, QhV)h, all x, y € C&. 

If fi = iV, then Q/jX is simply the element of S h that interpolates x 
at the nodes {tj}. In order to obtain a representation for Qh in the 
general case, we need some additional notation. Introduce the diagonal 
matrix 

(2.6) W = diag[wi , . . . ,wÄ ] . 

and the vector function <p_ : Q —• R ^ 

(2.7) ^ ) = biW, . . . ,^nW] T . 
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Also we will associate with any function x ECh the vector 

(2.8) x = [x{t1),...,x(tR)]T. 

Then it is straightforward to prove that 

(2.9) (Qhx)(t) = (pitfl^W^y^W]^ 

for any function x ECh and alH G fi. 

In the Introduction we have considered the orthogonal projection 
Ph : L2(fi) —• Sh- From now on, it will be called the "continuous 
projection" onto Sh, in contrast to the "discrete projection" Qh> We 
assume that 

[H5] || Phx - x ||oo-> 0, as h - • 0, all x G C(fi), 

[H6] sup || QÄ 11«, < oo. 
h>0 

The above assumptions ensure the fact that 

(2.10) | | « - Q Ä x | | o o < c | | a ; - P Ä a ; | | o o , xeC(Q). 

For a proof and other details, see [4]. The same reference contains 
some sufficient conditions under which [H1]-[H6] are satisfied, as well 
as some examples satisfying those conditions. In the remainder of this 
section we will give one such example which then is used in §4. 

Single variable results. Let fi = [a, 6] be a finite interval and let A^n^ 
be a partition of this interval of the form 

(2.11) a = 4n) < r[n) < < T^l = b. 

Let us define 

ft(n) = T{n) _ ^ n ) ^ A ( n ) = m ^ fc(n) ? 

uin) 
(2.12) <?(*)= max " 

l<i,j<mn fi (n)' 
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and suppose that the sequence of partitions {A^n^} is quasi-uniform in 
the sense that 

(2.13) lim m n = oo, sup</n) < oo. 

Under this assumption we have 

(2.14) lim fc(n) = 0. 
n—•oo 

In what follows we will measure the convergence rates of different 
approximation schemes in terms of the parameter h = hSn\ For 
notational convenience we will drop the index n and we will write 
h —• 0 instead of n —» oo. The elements of the partition A = A^n^ 
will be denoted simply 

(2 15) I A = = t7"0'71'"-'7™}' Ti = r i n ) ' A* = fc-i»7"»] 
\hi = h\n\m = ron, q = <?W, h = h^ 

We will denote C A the space of all piecewise continuous functions 
g : [a, 6] —• R such that g |A,-€ C^A»), i = 1,2, . . . , m . Clearly 
C A = C A *S a closed subspace of L°°[a, b] which contains the space of 
all continuous functions defined on [a, 6]. Let r be a nonnegative integer 
and let Pr^ denote the subspace of CA composed of all functions that 
are polynomials of degree < r on each of the subintervals A». 

We now put the above into the general framework considered af the 
beginning of this section. Let 

(2.16) H = [a,6], Sh = />r,A, Ch = CA. 

We have N = m(r + 1) = dimS^. The continuous projection Ph • 
L*[a,b]-+Sh, 

(2.17) {Phf,*>) = U,v), all tp G S*. 

In our case this means that for any polynomial xß of degree < r, we 
must have 

(2.18) (Phf,fl>)i = (f,1>)i, t = l , 2 , . . . , m 
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where (•, •) denotes the inner product in L2(A^), i.e., (u,v)i = 
IT%- u(t)v{t)dt. ^n 0I"der to define a discrete projection Qh ' Ch —• S/i, 
we first construct a numerical integration formula of the form 

(2.19) f f(t)dt = J2^jf(h)' 
Ja j=l 

We start with a numerical quadrature rule on [0,1], 

f1 P 

/ g(t)dt = Y,' (2.20) / g(t)dt = J2^j9(h)' 
3-

It is assumed to have the degree of precision d, such that 

(2.21) d > p - 1 > r, 

and positive weights 

(2.22) WjX), j = l , 2 , . . . , p . 

Then using the partition A, we define a numerical integration formula 
on [a, b] by 

pb m p 

(2.23) / f(t)dt = YlhiYl&i/(r»--i + fct*i)-

This can be identified with (2.19) by setting 

(2.24) R = rap, ti^.ijp+y = / i ^ - , t(i-i)p+j = n-t + Ä*2j 

for i = l , . . . , r a and j — l , . . . , p . Following [7] we consider the 
following sets of integers, 

(2.25) Ji = {(i-l)p + j] J = l , . - . , p } , t = l , . . . , m 

which allow us to rewrite (2.23) as 

mat = £ E wi/(*i).-
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With this numerical integration method, we define a discrete scalar 
product, as in (2.2), and then a discrete projection Qh : Ch —• Sh, as 
in (2.4). As in [7], we can state 

PROPOSITION 2.1. Let Ph,(-, -)h and Qh be defined as above, and 
suppose that (2.13), (2.21), (2.22) hold. Then [H1]-[H6] are satisfied for 
any basis <pi,..., <PN, N = mp, of Sh = Pr,A • 

PROPOSITION 2.2. Suppose that the hypothesis of Proposition 2.1 is 
satisfied with p > r + 1. Let z G C iy~1(A î) be given such that z^~^ is 
absolutely continuous on A{, i = 1 , . . . , m andzM €L°°[a,b}. Then 

jeJi V" 

where 
fi = min{i/, r + 1}. 

We note that the conclusion of the above proposition is trivially verified 
in case p = r + 1 when z(tj) = (Qhz)(tj)i j = 1, • • •, R-

PROPOSITION 2.3. Under the hypothesis of Proposition 2.1, 

\\z-QhZ\\oo=0{h^). 

3. Nonlinear discrete Galerkin methods. Let us consider 
again the nonlinear integral equation (1.1). Suppose we have chosen 
a sequence of finite dimensional spaces {Sh} and some numerical 
quadrature formulas of the form (2.1) such that conditions [H1]-[H6] 
are satisfied. The standard way of constructing a discrete nonlinear 
operator Kh to approximate the continuous nonlinear operator K from 
(1.1) is to use the same numerical integration formula (2.1) and define 

771 

(3.1) [<h{x)){t) = ^wiK{t,ti,x(tj)), t € n . 
t = i 
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In some cases it is advantageous to use a quadrature formula different 
from (2.1) in constructing the discrete operator K. Such a formula will 
be considered in §4. 

Once the discrete inner product (•, -)h and the discrete operator Kh 
have been defined, then the corresponding discrete Galerkin approxi
mation to the solution of (1.1) is an element Zh E S h of the form 

N 

3 = 1 

The set {<£>i,..., (pn} is a basis of S^, and the coefficients £ i , . . . , fjv 
are obtained solving the nonlinear system 

N N 

(3-2) J2 &to' Wh = (**GC &^i)' ^h' 
j=l j=l 

The iterated discrete Galerkin solution is 

N 

(3.3) **(0 = K*Ete)W, ^ n -
j=i 

LEMMA 3.1. The discrete Galerkin method (3.2) is equivalent to 
solving 

(3.4) Zh = QhKh{zh) 

while the iterated Galerkin solution (3.3) satisfies 

(3.5) zh = Kh(Qhzh) 

where Qh is the discrete projection induced by the discrete inner prod
uct (•, -)h as described in §2. 

PROOF. Equation (3.4) implies (1) Zh € Range (Qh) — SA, and (2) Zh 
satisfies 

(zh,ip)h = (Kh(zh),il))h, all il) e Sh. 
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Letting ij) = <pi,... ,<Piv, we obtain (3.2). The argument is easily 
reversed as well. 

From (3.3) for zhi 

(3.6) zh = Kh(zh) 

(3.7) QhZh = QhKh{zh) = zh. 

Substituting into (3.6), we obtain (3.5). D 

The analysis of (3.5) and Zh will follow closely the framework of Atkin
son (1973), which gave a general theory for collectively compact fam
ilies of approximating operators. From this, we assume the following 
hypotheses for {Kh}-

[Al] K and Kh, h > 0, are completely continuous nonlinear operators 
from the open set D C L°°(n) into C(Q). [In the case that Sh C C(fi), 
the domain space L°°(Q) can be replaced by C(Q).] 

[A2] {Kh | h > 0} is a collectively compact family on D, i.e., for every 
bounded set 5 c D , the closure of 

U <h(B) 
h>0 

is compact in C(O) 

[A3] Kh is pointwise convergent to K on D, i.e., for all i G D , 

Kh(x) - • K(x) as ft->0. 

[A4] At each x E D, {Kh} is an equicontinuous family. 

Examples of such families {Kh} are given in Atkinson (1973). For 
K(t,s,u) continuous, the definition (3.1) satisfies [A1]-[A4]. For a 
satisfactory definition of point evaluation for functions in L°°(fi), see 
[5, §2]. 

We begin the analysis of Zh by examining the operators 

(3.8) KhQh : x - Kh{Qhx), xeb 
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withz> = z?nc(n). 

LEMMA 3.2. Assume [H1]-[H6] for the approximating subspaces {Sh} 
and the discrete product (•, -)h> Further assume K and {Kh} satisfy 
[A1]-[A4]. Then {KhQh} also satisfies [A1]-[A4], from D into C(Q). 

PROOF. The derivations of [Al]-[A4] are straightforward, and we 
include only the proof of [A3]. From [A4] for {Kh}, we have that 
for each x E D there exists a real-valued function ex(r) for which 

(3.9) || Kh(x) - Kh(y) Hoc < ex(\\ x-y H«,), h > 0 

(3.10) ex{r) - > 0 a s r - > 0 . 

Then for KhQh, 

II K(x) - Kh(Qhx) || < || K(x) - Kh(x) || + || Kh(x) - Kh(Qhx) \\ 

<\\K{x)-Kh{x)\\+ex{\\x-Qhx\\). 

Use (3.10) and [A3] for {Kh} to prove [A3] for {KhQh}. 

The analysis of {eh} in (3.5) can now follow that given in [7]. Rather 
than reproduce that complete theory, we consider the most important 
case. Assume {Kh} satisfies 

[A5] Let x* G D be a fixed point of AT, and let B(x*,r) C C(H) denote 
a ball of radius r about x*. Then for some r > 0, K and Kh, h > 0, are 
twice differentiate on B(x*,r) and 

\\K"(*)\\A\Kh(x) | | < M < o o , Ä > 0 , xeB{x\r). 

[Note: This will imply [A4] for {Kh} on B(x*,r).] 

LEMMA 3.3. The second derivatives of KhQh will also satisfy [A5] on 
the ballB(x*,r). 

PROOF. Let Ch(x) = Kh(Qhx). Then 

f 3 1 1 i C'h(x)<p = Kfh(Qhx)QhV 
£Kx)fail>) = Kit{Qhx)(Qh<p,Qhtl>). 
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Apply [A5] for {Kh} and [H6] for {Qh} to finish the proof. D 

THEOREM 3.4. Assume that [H1]-[H6] and [A1]-[A5] are satisfied. Let 
x* be a fixed point of K, and assume 1 is not an eigenvalue of K'(x*). 
Then there is a neighborhood B(x*,r) and an ho > 0 such that for 
0 < h < ho, the equation x = Kh(Qh%) has a unique solution Zh inside 
B(x*,r). In addition, 

(3.12) || x* - zh ||oo< c || K(x*) - Kh{Qhx*) IU 

with sorqe c > 0. [The letter c denotes a generic positive constant.] 

PROOF. This is immediate from applying [l,Theorem 4] to the family 
{KhQhY n 

COROLLARY 3.5. For each 0 < h < h0, 

II ** - zh ||oo< cMax{ || /COO - <h{xm) Hoc, 
(3.13) * Wx'-Qnx'Wl, 

\\K'h(x*)[x^Qhx*]\\00} 

PROOF. Take bounds in the expansion 

K(x*) - Kh(Qhx*) = 

[/COO - <h(x')] + K'h(x*)\x* - Qhx*) + 0(\\ x* - Qhx* | | 2 ) . 

The family {K^'(x*)} is uniformly bounded using [A5]. D 

Error bounds for the discrete Galerkin solution are obtained by using 
(3.7). We have 

(% 14Ì [x* -zh = x* - Qhzh = x* - Qhx* + Qh(x* - zh) 
^ • 1 4 i \\\x*- zh \\<\\ x* - Qhx* || +[sup || Qh ||] || x* - Zh 

Actual rates of convergence are then easily obtained using (3.13). 

Urysohn Operators. We will now consider more specific approxima
tions Kh- For the Urysohn operator (1.1), assume K(t^s^u) is twice 
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continuously differentiate with respect to u. Define Kh by (3.1). Then 
easily 

(3.15) Kf(x)ip{t)= Ku(t,s,x(s))<p{s)ds, teQ 
Ja 

R 

(3.16) K'h{xMt) = J2^jKu(t,tJ,x(tJ)Mt3) 
3 = 1 

with Ku = dK/du. The weights Wj are to be the same as in (2.2) for 
the discrete inner product. K" and Kfc are defined similarly. 

Examine the terms on the right side of (3.13). The term 
|| K(x*) — Kh{x*) ||oo is simply a numerical integration error. The 
term || x* — Qx* H^ involves the approximation properties S^, and 
it can be bounded from (2.10). The third term can be treated in the 
same way as in [4, Lemma 5.4]. Let 

Ç{8)=l*{t,8)=Ku(t,8,X*{8)). 

Then 
(3.17) 
/C£0O[z* - Qhz*](t) = Œ , (/ - Qh)x*)h = ( ( / - Qh)tt, (I - Qh)x*)h 

\K'h(**)[I-Qh]x*{t)t\ 

<\\{I-Qh)i;\\hti-\\{I-Qh)x*\\h9oo 

where 

R 

II / l k i = 5 > i I A ' i ) I' II / l k ~ = Max !<,-<« | f(tj) | . 
i=i 

For smooth £(t,s), the term || (I — Qh)£* IU,i will be of the same order 
as || (I — Qh)x* ||; and then the error bound (3.13) will reduce to 

(3.18) || x* - zh || < cMax{|| K{x*) - Kh{x*) ||oo, || ** - Qhx* | | ^ } . 

More detailed results will require additional assumptions about Sh and 
the numerical integration scheme used in defining Kh and (•, )^. We 
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have not stated these results more formally because they are mainly a 
guide to obtaining the actual rates of convergence. 

An especially interesting case of the iterated discrete Galerkin solu
tion is when N = R. 

THEOREM 3.6. Assume Kh(x) depends on x(t) at only t = ti,...itR. 
Further assume that N = # , h > 0. Then 

(3.19) zh = Kh{zh), 

and thus Zh is independent of the choice of Sh- Then the error bound 
for Zh is of the simpler form 

(3.20) || s* - zh ||oo< C || /C(x*) - Kh{x*) Hoc . 

PROOF. From the comment following (2.5), N = R implies QhX in
terpolates x at t — t\,... ,ÌR. In (3.5), Kh{QhZh) depends on QhZh{t) 
at t = £ i , . . . ,£#; and by the interpolating property, these are simply 
5fc(*i),... ,zh(tR). Thus Kh{QhZh) = Kh{zh)- The error bound is im
mediate from (3.12). 

4. Discrete Galerkin methods for equations with kernels of 
class £2(0^ 7)« In this section we will give a more detailed analysis in 
the one dimensional case. Accordingly, Q will be a closed and bounded 
interval of the real axis, so that (1.1) can be written in the form 

(4.1) x(t)= f K{t,s,x{s))ds. 
Ja 

We will assume that the kernel K belongs to the class £ i (a , 7), 
defined in [6] where a and 7 are two integers such that a > 7, a > 
0,7 > — 1. This means that K has the following properties: 

[Gl] The partial derivative 

(4.2) e(t,s,u) = d-^Jâ 

exists for all (t, s,u) G ^ = [a, b] x [a, b] x R. 



THE DISCRETE GALERKIN METHOD 31 

[G2] Define 

* i = {(*, s, u) | a < s < t < b, ueR} 

# 2 = {(t,5,u) | a < t < s < ò, ueR}. 

There are functions U e Ca(^i),i = 1,2, with 

Pd « »,\ - J*i(M,u)> {t.s.u) 6 * i , * ^ 3 
( ' ' U)-\t2{t,S,ul (t,S,u)e*2. 

[G3] If 7 > 0, then t G C"^*). If 7 = - 1 , then I may have a 
discontinuity of the first kind along the line s = t. 

Under the above assumptions it is clear that there are two functions 
Ki G Ca(**)> i = 1,2 such that 

K(f Q f l x _ f t f i (M,t*) , (* ,5, t i )G*i , 
l ' ' J " l ^ 2 ( ^ ^ ^ ) , ( M , u ) € * 2 . 

£ ^ s 

If the kernel If satisfies [G1]-[G2] as well as 

[G4] 

(4-4) ^ € ( 7 ( ^ ^ 1 , 2 , 

then we say that K belongs to the class £2(^,7). If a > 2 then 
obviously £ i ( a ,7 ) = £2 (a, 7)-

Let us denote by K the nonlinear operator defined by the right hand 
side of (4.1): 

(4.5) (Kx){t)= f K(t,s,x{s))ds. 
Ja 

In [6] we have proved the following result: 

THEOREM 4.1. Suppose that Urysohn's operator (4.5) has a kernel 
KeQi{a,~i). Then 

(a) K is a completely continuous operator from L°°[a,b] into Cv [a, b] 
for v = 0 , 1 , . . . , 71, with 71 = Mm{7 + 1, a}. 
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(b) For a > 1, K is a continuous operator fromCv [a, b] into CvJrX [a, 6], 
v = 0 , 1 , . . . , a — 1. 

As an immediate consequence we have 

COROLLARY 4.2. Under the hypothesis of Theorem 4.1 suppose that 
K has a fixed point x*. Then x* E Ca[a, b]. 

Now let A be a partition of the interval [a, b] as defined in the last 
part of §2, let Sh = Pr,A and let Ph (resp., Qh) be the continuous 
(resp., the discrete) projection onto Sh considered there. In accordance 
with the notation introduced in §1, let Xh^Xh denote the Galerkin and 
iterated Galerkin solutions of (4.1) corresponding to the projection P^. 
In [6] we have proved that under appropriate hypothesis the orders 
of convergence of these solutions are the same as those obtained by 
Chatelin-Lebbar (1984) in the linear case: 

THEOREM 4.3. Assume K G £2(^51), and let x* be a fixed point of 
the Urysohn operator (4.5) with 1 not an eigenvalue of K'(x*). Also, 
suppose that the hypothesis of Proposition 1 is satisfied. Then for all 
sufficiently small h > 0, the equations 

(4.6) xh = PhK{xh), xh = K{Phxh) 

have solutions Xh,Xh which satisfy 

(4.7) || Xh-x'W^Oih?) 

(4.8) | |x fc-s* | |oo=0(fc / 5 + / , a ) 

(4.9) ras^\xh{t)-x*{t)\=O(h20) 
teA 

where 

(4.10) ß = Min {a, r + 1}, ß2 = Min {a, r + 1,7 4- 2}. 
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Let us consider now a quadrature formula of the form (2.19)-(2.26), 
the corresponding discrete inner product (•, •)&, and the discrete pro
jection Qh induced by it. Also let us denote, by Kh, the standard 
numerical approximation of the operator (4.5) constructed with this 
quadrature rule: 

R 

(4.11) (Khx)(t) = ^wjK(t,tJ,x(tJ)). 
3 = 1 

The following result is then easily proved. 

PROPOSITION 4.4. Assume that the hypotheses of Proposition 2.1 
and Theorem 4.3 are satisfied with 7 > 0, and let Kh be the discrete 
operator defined by (4.11). Then for any z € C&[a, b], 

(4.12) ll(/CA-/C)(z)||oo=0(Aw-) 

(4.13) w*x\[{Kh-K)(z)]{t)\=0{hs») 

where 

(4.14) 6V = min{a, v, d + 1}, UJ» — min{^ , 7 + 2}. 

Moreover, conditions [A1]-[A5] from §3 are satisfied. 

As observed in §3, the Frechét derivative of X", resp. Kh, at x* can 
be represented by the formulae 

(4.15) [K'(x*)<p](t) = f e*(t,sMs)ds, 
Ja 

respectively 

R 

(4.16) [K'h{x*)<p]{t) = £ V M X * ; ) , 
3=1 
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where 

(4.17) t{t,s)=Ku{t,S,X*{s)). 

Under the hypothesis of Theorem 4.3, the function £* belongs to the 
class £ (a ,7) defined in Chatelin-Lebbar (1984). 

DEFINITION 4.5. A function y : [a.b] x [a, 6] —• C is of class £(01,7) 
(with a > 7, a > 0,7 > —1) if and only if 

„n q\- J I/i(M)i a<s<t<b 

with 2/1 G C a({a < s < t < 6}),2/2 e Ca({a < t < s < 6}), 
and y G C^Qû^ft] x [a,6]), for 7 > 0. In case 7 = —1, y may 
have a discontinuity of the first kind on {s = t}. Let us denote 
by X, respectively Mh, the resolvents of the linear operators (4.15), 
respectively (4.16): 

M = {I-K'{x*))-1K'{x*) 

Mh = (I-Kf
h(x*))-1Kfh(x*). 

Using results proved in [9] and [6, 7], we obtain 

PROPOSITION 4.5. Under the hypothesis of Proposition 4.4, there is 
a function M G £(a,7) and a function Mh G C7([a,6] x [a,b]) such 
that 

(4.18) {Mx){t)= f M(tiS)x{s)ds 
Ja 

(4.19) (Mhx)(t)= I Mh{t,s)x{s)ds 
Ja 

(4.20) sup I M{t, s) - Mh(t, s) |= 0{h") 
s,te[a,b] 
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(4.21) \\Mh(Qh-I)x* W^Oih^^) 

(4.22) || (/ + Mh)(Kh - K)(x*) l u 0(h") 

where ß is given by (4.10) and 

(4.23) u) = min{a, d + 1,7 + 2}, ßx = min{a, r + 1,7 + 1}. 

The above proposition and Proposition 2.3 are used in the proof of 
our main result. 

THEOREM 4.6. Assume that the hypothesis of Proposition 4.4 holds. 
Then, for all sufficiently small h > 0, the equation 

(4.24) ~zh = Kh(Qhzh) 

has a solution Zh satisfying the following: 

(a) Ifp = r + 1, then 

(4.25) | | 2 Ä - S * | | O O = 0 ( Ä W ) 

(b) Ifp> r + 1, then 

(4.26) WzH-x'W^Oih*). 

The exponents are defined by 

u = min{a, d + 1,7 4- 2}, ÖJ = min{u;, 2r + 2}. 

PROOF. Let us denote 

ä = KhiQhZh) - Kh(QhX*), 

b = Kh(x*)-K(x*)i 

c = Kh(Qhx*)-Kh(x*), 
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SO that 

(4.27) zh - x* = à + b + c. 

We have 

ä = K'h(QhX*)Qh(zh - x*) + äi 

= K'h{x*)Qh{zh-x*) + â1+â2 

= /C£(**)(Qfc - I)(zh - x*) + K'h{x*)(zn - x*) + 5i + a2. 

where 
IIA! | | o o = 0 ( | | 5 Ä - X * HS,,), 

II a2 ||oo= 0 ( | | 5/* - x llooll QÄx* - x* Hoc). 

According to Proposition 2.3, 

\\~a2\\oo = \\~zh-x*\\O{h0). 

Also 
c = K'h(x*)(Qh-I)x* + c1 

with c = c\ = 0 for p = r 4-1 and 

115x1100= 0 ( | | ( Q A - / ) x * ||cU) = 0(ft2'?) 

for p > r -h 1. 

Using Corollary 4.2 and (4.12), we deduce that 

116 1100= 0(h"). 

With the above notation, we can move the term K'h(x*)(zh — x*) to 
the left side of the error equation (4.27) and then solve for Zh — x*, 
obtaining 

(4 28) ~Zh~x* = Mh{Qh - I){zh - x*) 

+ Mh{Qh - J)x* + {Mh + I){b 4- 5i + â2 + ci). 

In case p = r + 1 the first two terms on the right hand side of (4.28), 
as well as c\, vanish so that 

Il ih -x* Hoc <\\ Mh + I Hoc (|| b Hoc + || äi || 4- || ä2 Hoc)-
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It follows that 

| | Zh - X* Hoc < || Zh - X* Hoc 0 ( | | Zh - X* H«, +hß) + 0 ( Ä W ) , 

from which we deduce that 

\\h-x*\\oo= o(/iw), 

thus proving (4.25). 

In case p > r + 1, then the first term on the right hand side of (4.28) 
can be majorized if we observe that, according to Proposition 2.2, 

\[Mh(Qh-I)(zh-x*)){t)\ 
m 

< c £ A f 1 + è { £ «v I [(' - <3/0(5* -**)](';) I2 } 1 / 2 

i = i jeJi 

The constant c does not depend on t or h. 

The second term on the right side of (4.28) is majorized by (4.21) so 
that 

\\Zh -X* Hoc 

< | | Zh - X* Hoc 0 ( Ä * + Ä * + H 5fc - X* Hoc) + 0 ( / l " + * + h" + ft2/?). 

Hence 
II 2* - x* ||oo='0(Ä/9+'91 +hu + h2?) = 0(Ä"), 

which completes the proof of our theorem. D 

COROLLARY 4.7. Assume that the hypotheses of Proposition 4-4 hold. 
Then for all sufficiently small h > 0, the discrete Galerkin equation 

Zh = QhKh{Zh) 

has a solution Zh such that 

(4.29) | | 5 h - * * | | o o = 0 ( Ä Ä ) 
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where ß<i = min{a, r + 1,7 + 2}. 

PROOF. We have 

zh-x* = Qh{zh - x*) + (Qhx* - x*). 

By using [H6], Proposition 2.3 and Theorem 4.6, we obtain 

Il h - x* ||oo= 0{h* + hß) = 0{hß*). 

By comparing Theorem 4.3 and Corollary 4.7 it follows that if 

(4.30) min{a, r + 1} = min{7 + 2, r + 1}, 

then the order of convergence of the continuous Galerkin method 
coincides with the order of convergence of the discrete Galerkin method. 
In particular it follows that this order of convergence can be attained 
for d = p — 1 = r, which leads to a nonlinear system of the form (3.2) 
with N = mp — R. 

On the other hand, by comparing Theorems 4.3 and 4.6 we deduce 
that the order of the discrete iterated Galerkin method equals the order 
of convergence of the continuous iterated Galerkin method if (1) 

(4.31) a > 2r + 2, 7 > 2r, 

and (2) the quadrature rule (2.20) is chosen such that 

(4.32) d > 2 r + l. 

We note that if (4.31) is satisfied, then by choosing (2.20) to be the 
Gaussian quadrature with p = r + 1, we have 

(4.33) d = 2r + l = 2 p - l , 

so that (4.32) is satisfied. This leads again to a system of the form 
(3.2) with N = mp = i2, which is to be solved for £ , . . . , £/v- Then ZH 
is to be obtained from (3.3). However, as we have noted in §3, in this 
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case (i.e., p = r + 1, d = 2r + 1) Zh can be obtained directly by solving 
the Nyström equation 

N 

(4.34) zh{t) = J2wjK(t,tj,Zh{tj)). 

This is done by obtaining first z(ti),... , 5(£jv) as a solution of the 
nonlinear system 

N 

(4.35) zh(ti) = ^wjK{tiìtj,Zh{tj))ì 2 = 1,...,AT, 
j=i 

and then using (4.34) as an interpolation formula. This is clearly more 
efficient than solving (3.2) and then using (3.3). 

However, if (4.31) is not satisfied, then in general, the order of 
convergence of the discrete iterated Galerkin method is less than the 
order of convergence of the continuous Galerkin method. Numerical 
experiments show that we have to take p very big in order to recover 
the accuracy of the continuous iterated Galerkin method. This is 
impractical for numerical applications. 

A method for Green's kernels. We will show that by considering 
different quadrature rules in discretizing the inner product (•, •) and 
the integral operator AT, we can recover the order of convergence of 
the continuous Galerkin method (and more!). For the discrete inner 
product, we consider the rule (2.20)-(2.26); while in constructing the 
discrete nonlinear operator, we use the quadrature rule employed in 
[7] for the numerical solution of linear integral equations with Green's 
function type kernels. 

In what follows, we use the notation introduced in the above quoted 
paper. Thus let us assume again that (2.20) is the Gauss-Legendre 
quadrature rule, so that (4.33) holds. Denote 

(4.36) /> = { l , 2 , . . . , f l } , T = { t i , i 2 , . . . , * « } . • 

Let q be a positive integer such that 

(4.37) V < Q ^ 2p 
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and let us consider a family {T}£Li of subsets of T such that 

*i e Ti = {tj ,*?, . . . ,*?}, a l l i e d , 

max{| t-tj\;t€ Tuj G Jj} < xh 

where x is a given constant (generally % < 2). 

Also, let tf, k = 1 , . . . , g, denote the elementary Lagrange polynomi
als associated with the nodes in T> so that the Lagrange interpolation 
polynomial of a function x at these nodes can be written as 

(4.38) (&*)(0 + X>(tf)«(t). 

fc=l 

If we introduce a family of indices { P ^ } ^ such that 

JiC Di = {ii,«2, . . . ,*«} C J, J» = {*i : J G A}, 

** = ***> * = l , . . . , m , fc = l , . . . , g , 

then (4.38) can be written as 

(4.39) d(x)(t) = £ ^ ( t ) , ^ = *(«?). 
k=l 

If g is large, the above formula is computationally inefScient, so that 
we will use instead the Newton form of the interpolating polynomial: 

q-l 

(4.40) [d(x)]{t) = £ x[tl..., i*+1](i - tj) . . . ( * - **). 

The actual evaluation is done by nested multiplication. In fact we use 
(4.40) to construct a discrete analogue Kh,q of K and (4.39) to compute 
the Fréchet derivative of this discrete operator. 

It is convenient to introduce the following functions: 

(0 fo r£<7;_ i 
(4.41) 0?Ht) = \ t - n - i f o r r < _ i < t < r < 

I hi for Ti < t 
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( hi tor t < Tj_i 
(4.42) flrWH7*-* ferrai < * < r < 

l o for r» < * 

( ! ) m - ^ . . j . / l ( l ) / (4.43) # ' W = * - i + C ( 0 * i 

(4.44) ^ ) W = n . + ö ( 2 ) - W ( ^ . _ 1 ) 

i = l , . . . , m , i = l , . . . , p . 

With the above notation we can define the discrete operator Khq • 
C[a, b] —• C[a, b] such that 

2 m p 

(4.45) (KMz)(*) ̂ E ^ W E ^ ^ Ï ' W ' ^ ^ W ) ) ' 
cr=l Î = 1 j ' = l 

As a simpler computational definition for t G At- we can write 

m 2 

(4.46) M ( « ) = EE*i if('-<^fe))+EAl'1( t) 
" = i jeJv cr=l 

where 

(4.47) AW(t) = Jf»(t) è ti**(*, #>(*) , (£<*) (#>(*))). 

As in [7], we can prove the following result concerning the distance 
between K and Kh,q-

PROPOSITION 4.8. Under the hypothesis of Proposition 4.4, suppose 
thatp — r + 1 and that (2.20) is £/ie Gauss-Legendre quadrature formula 
(so that d = 2r + 1). Then 

(4.48) l l ( ^ - ^ ) ( ^ ) l l o c = 0 ( ^ 2 ) 
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(4.49) max | [(/CM - K)(x*)](t) \= 0{h°*) 

where 

(4.50) a i = min{a, 2r + 2}, q2 = min{a, 2r + 2, g + 1}. 

Moreover, conditions [Al]-[A5] /rom §3 are satisfied for the family of 
operators {AT, Kh,q : h> 0}. 

It is easily seen that for any function a;, the function Kh,q{x) defined in 
(4.45) depends on x only via the values x(£i ) , . . . , X{ÎR). On the other 
hand, if p = r + 1 then Q^x is the element of S h which interpolates x 
at £I,$2J•••>£#• Hence Kh,q{x) = Kh,q(Qhx)), so that in this case the 
discrete iterated Galerkin method (3.5) reduces to the Nyström method 

(4.51) 2J( - /CM(S2). 

THEOREM 4.9. Suppose that the hypothesis of Proposition 4.8 is satis
fied. Then the equation (4.51) has a unique solution for all sufficiently 
small h, and we have 

(4.52) K-**Hoo=0(A<") 

PROOF. Apply Theorem 3.6 and Proposition 4.8. D 

Suppose now that a is sufficiently big, while 7 is small in the sense 
that 

(4.53) a > 2 r + 2, 7 < r - 1 

This is certainly true when the integral equation (4.1) is an equivalent 
formation of the two-point boundary value problem 

(4.54) x"(t) = f(t,x(i)), a<t<b, x(a) = x{b) = 0 

which leads to a kernel of the form 

(4.55) K{t, «, u) = G{t, s)f{s, u) 
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with 

<4-56) GM={:g:$; ;|; 
In this case, 7 = 0 and (4.53) is satisfied whenever / is of class Ca. 
Actually, in many applications we have a = 00,7 = 0. 

If (4.53) holds, then by taking q = 2 r + l = 2p — 1 in those cases where 
(4.53) holds, the discrete iterated Galerkin (also Nyström) method 
(4.51) with q = 2p — 1 has a better uniform convergence rate than 
the continuous iterated Galerkin method. The latter is able to attain 
the same order (i.e., 0(ft2r+2)) only at break points (see (4.9)). In 
addition, under our assumptions the discrete iterated Galerkin method 
using standard Gaussian quadrature has the convergence order 

(4.57) || z / l - x * | | 0 O = O ( ^ + 2 ) 

(see (4.25)), so that the order cannot be increased by increasing the 
number of node points in each of the intervals A i , . . . , A m (i.e., by 
increasing p = r + 1). 

Operations count. Let us now consider the cost of solving the 
respective Nyström approximations: 

(4.58) zh = Kh(zh) 

(4.59) 22r+1 = /CM r + i (2^+ 1) . 

We have seen that, in order to solve(4.58), we have first to solve the non
linear system (4.35) and then to use (4.34) as an interpolation formula. 
Similarly, (4.59) is solved by first obtaining v\ = ^ r + 1 ( £ i ) , . . . , VN = 
i ^ r + 1 (tj>i) as a solution of a nonlinear system whose //-th equation with 

(4.60) /i = (i — l)p + 5, i = 1 , . . . , m, s = 1 , . . . ,p, 

is formed as follows: 

(4.61) Ol = ht,, Ol = hi(l-ta) 

(4.62) # i f l = 7ï-i + o}st3, $j9 = Tl + eUh -1) 
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(4.63) %ja = {Ci~z2r+2Mja), * = 1,2 

2 P 

(4.64) t;„ = £ £ «;,•*(*„,*,-, «,•) + E E*f.<W*» Ç&Cijs)-
v=}. 3^Jv a=lj=l 

Then (4.46) can be used as an interpolation formula. 

Consider now that we have fixed a partition A = A^ with mesh size 

»-°(=)-°(S) 
and that we want to solve (4.58) and (4.59) for this h. If we denote 

(4.65) Ui = ~zh(U), u= [ U I , . . . , U A T ] T , 

then the nonlinear system corresponding to (4.58) can be written in 
the form 

(4.66) F(u) = 0. 

The function F : RN —• KN has its i-ih component given by 

N 

Fi(u) -Ui-^2wjK(U,tj.Uj). 
i=i 

Similarly the nonlinear system corresponding to (4.59) is of the form 

(4.67) H(v) = 0, 

where the //-th component of H : KN —» R ^ can be written as 

m 2 V 

In the above formula, £?JS is to be computed as in (4.60)-(4.63) with 
the interpolation polynomial (4.40) evaluated by nested multiplication. 
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It is easily seen that the computation of the vector F(u) for a given 
u G RN implies N2 kernel evaluations (K{ti,tj,Uj),i,j = l , . . . iV) 
plus N2 multiplications and N2 additions, that is 0(N2) arithmetic 
operations (we have omitted the O(N) arithmetic operations needed 
to compute £1 , . . . , £JV>WI, • • • ,WN)> 

On the other hand, the computation of H(v) involves N(N + P) 
kernel evaluations, N(N + Sp) multiplications, N(N + SP) additions 
plus the evaluation of £^3 for i = l,.. . ,ra;<7 = 1,2;j,s = l , . . . , p . 
The evaluation of the divided differences appearing in (4.40) involve 
\mq2 divisions and ^mq2 additions; the nested multiplications involve 
2Npq multiplications and 2Npq additions. Thus the evaluation of the 
£ij3 costs about mq2 + 4Npq = 4N(p + 2p2) arithmetic operations. It 
follows that 

cost (H(v)) = cost (F(u)) + pN cost (K) + 0{Sp2N). 

In case cost (K) and p are small in comparison with TV, then cost (H(v)) 
and cost {F(u)) are about the same (= 0(N2)). 

In solving the systems (4.66), (4.67) we will use a Newton-like 
method. Therefore it is important to assess the cost of evaluating the 
Jacobians F'(v) and H'{v). The ij entry of F'(u) is given simply by 

[F'(u)]ij = 6ij - WjKu(ti, tj, Uj). 

This means that 

cost {F'(u)) = Accost (Ku) + iV2mult. + iV2add. 

Consider now a // of the form (4.60). Then: 

= -wpKu{t^tp,vp) if p<£ Di 
V 2 

= -wpKu(t^tPìvp) - ^ ô , - ^ ^ ^ ) ^ ^ , ^ , ^ ) 
i = l <7=1 

if pe Di\Ji, p = ik, 
P 2 

lì pe DiCiJi, p = ik> 
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In the formulas above, the £$ are the elementary Lagrange polynomials 
from (4.38), (4.39). The computational cost of producing the ^ ( £ ^ . J 
is about 

8ATp2mult. + 4ATp2div. 

If this is to be done, then we can compute the t% s via (4.38) with an 
additional 

4iVp2mult. + 4iVp2 add. 

This is about the same as the cost of evaluating £^s directly by (4.40) 
with nested multiplication. Adding all arithmetic operations we come 
to the conclusion that 

cost [H'(v)\ = cost [F'{u)] + piVcost {Ku) + O(20p2iV). 

Again, if cost (K) and p are small in comparison with iV, then the cost 
of both F'{u) and H'(v) will be of order 0(N2). In this case it follows 
that the cost of a Newton step for solving (4.66), respectively (4.67), 
will be dominated by the cost of solving the respective linear systems, 
which is of order 0 ( | iV 3 ) . Thus techniques to reduce the cost should 
seek to reduce the cost of solving the linear systems. 

It turns out that by using a suitable multigrid technique we can re
duce the cost of the linear algebra to 0(cN2), reducing in the same 
time the cost of F'{u), respectively H'{v). Moreover if one needs only 
one iteration on the finest grid then it is possible to reduce the cost of 
F(u) respectively # (v) , as well. These problems, and others involving 
the iterative solution of the nonlinear systems, will be addressed in a 
future paper. 

5. Numerical examples. To illustrate the preceding results for 
discrete Galerkin methods we give numerical results for three integral 
equations. Two of these equations were used as illustrations for the 
earlier paper [6] on Galerkin methods for nonlinear integral equations. 

Our first equation is 

where y is so chosen that 

x*(t) = , c > 0 
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is a solution of (5.1). The function K is given by 

K(t,s,u)= +y(t). 

t + S + U 

For the error, we refer to Theorem 4.6. In this case, the constants 
a and 7 of Theorem 4.6 can be chosen as large as desired. The error 
formulas (4.25) and (4.26) become 

, , - . . . _(0(h^), p = r + l 
11 * l | o o ~ \ 0 ( ^ ) , p>r + l 

with cJ = Min {d + 1,2r + 2}. We give results for only p = r + 1, and 
we use Gaussian quadrature with r + 1 nodes on each subinterval to 
define the numerical integration. Then 

(5.2) \\~zh-x*\\O0=0{h2r+2). 

The numerical results are given in Tables 1 through 4. For comparison, 
we also include the errors for the iterated continuous Galerkin method, 
.taken from [6]. The number of nonlinear equations that must be solved 
is denoted by ne. 

Table 1. x* = !/(* + !) : r = 1. 

1 n 

2 

4 

8 

1 16 

ne 

4 

8 

16 

32 

II X* -Zh lloo 

7.30E-5 

4.10E-6 

2.48E-7 

1.53E-8 

Ratio 

17.8 

16.6 

16.1 

II •E %h | |oo 

4.02E-6 

7.83E-7 

5.88E-8 

3.82E-9 

Ratio 

5.13 

13.3 

15.4 
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Table 2. s* = \/{t + 1) : r = 2. 

1 n 

2 

4 

8 

16 

ne 

6 

12 

24 

48 

II** -Zh ||oo 
6.62E-7 

1.25E-8 

1.97E-10 

3.11E-12 

Ratio 

52.9 

63.5 

63.4 

|| X* -Xh Hoc 

1.05E-6 

1.86E-8 

2.90E-10 

4.58E-12 

Ratio 1 

56.5 

64.1 

63.3 

Table 3. x* = l/(* + 1) : r = 1. 

n 

2 

4 

8 

[l6 

ne 

4 

8 

16 

32 

II X* -Zh | |oo 

1.15E-4 

6.31E-6 

3.83E-7 

2.38E-8 

Ratio 

19.1 

15.7 

16.1 

II X Xfi lloo 

1.12E-2 

1.19E-3 

8.95E-5 

5.99E-6 

Ratio 

9.41 

13.3 

14.9 

Table 4. x* = !/(* + .!) : r = 2. 

1 n 

2 

4 

8 

1 16 

ne 

6 

12 

24 

48 

II X* -Zh ||oo 

1.30E-6 

1.54E-8 

2.24E-10 

2.96E-12 

Ratio 

75.2 

67.4 

74.7 

II X Xh 1 |oo 

1.69E-3 

7.94E-5 

2.18E-6 

4.39E-8 

Ratio 

21.3 

36.4 

49.7 
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The values of Ratio generally agree with (5.2). For the smooth 
solution x* = l/(t + 1), the iterated Galerkin method is somewhat 
superior to the discrete iterated Galerkin method. The reverse is true 
for the more rapidly changing function x* = l/(t + .1), in Tables 3 and 
4. In all cases, the iterated Galerkin method was far more expensive 
in computation cost, due primarily to the numerical integration of the 
Galerkin coefficients to reasonably high accuracy. Also, the discrete 
iterated Galerkin method is a Nyström method in this case (since 
p = r + 1); and implementing it as Nyströms method is less expensive 
than implementing it as a discrete iterated Galerkin method. 

Our second example is 

(5.3) x{t) = f G{t,*)[/(*,x{s)) + z{a)]d8 
Jo 

(5.4) «fc.)-{:{i:$ :i\ 
with z(s) so chosen that 

(5.5) a5*W = *Ü£L*), o o . 
t + c 

The integral equation (5.3) is a reformulation of the boundary value 
problem 

(5.6) x" = f{t, x(t)) + *(*), 0 < t < 1 

x{0) = x{\) = 0. 

We consider the particular example 

(5.7) /(4>tt) = _ J _ 

Referring to the discussion following Theorem 4.9, we can take 7 = 0 
and a arbitrarily large with equation (5.3). By letting q — 2r + 1 in 
the scheme (4.51), we obtain 

(5.8) l l * * - 5 £ l l o o = 0 ( A 3 r + 3 ) . 
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In contrast, the continuous iterated Galerkin method yields 

(5.9) | | ^ - x f t | | 0 O = 0 ( / i r + 3 ) . 

The numerical results are given in Tables 5 through 8. 

Table 5. x* = t(l - t)/(t + 2) : r = 1, q = 3. 

n 

2 

4 

8 

16 

ne 

4 

8 

16 

32 

II x* -h lu 
4.99E-5 

3.25E-6 

2.13E-7 

1.30E-8 

Ratio 

15.4 

15.2 

16.4 

II % %h ||oo 
1.13E-4 

1.05E-5 

7.98E-7 

5.47E-8 

Ratio 1 

10.8 

13.2 

14.6 

Table 6. x* = t(l - t)/(t + 2) : r = 2, q = 5. 

n 

2 

4 

8 

16 

ne 

6 

12 

24 

48 

|| ^ zh || oo 

3.73E-7 

7.22E-9 

1.20E-10 

1.84E-12 

Ratio 

51.6 

60.1 

65.2 

| | X* -Xh | |oo 

2.91E-6 

1.23E-7 

4.43E-9 

1.48E-10 

Ratio 

23.7 

27.8 

29.9 
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Table 7. x* = t(l - t)/(t + .4) : r = 1, q = 3. 

1 n 

2 

4 

8 

16 

[32 

rce 

4 

8 

16 

32 

64 

| |**-2fc | |oo 
6.74E-3 

1.48E-3 

1.31E-4 

9.31E-6 

5.96E-7 

Ratio 

4.6 

11.2 

14.1 

15.6 

|| X* -Xh lloo 

3.91E-4 

5.77E-5 

6.17E-6 

5.17E-7 

3.75E-8 

Ratio | 

6.8 

9.4 

11.9 

13.8 

The values of Ratio are consistent with the error results in (5.8), 
(5.9). For r = 1, the continuous and discrete iterated Galerkin meth
ods have the same order of convergence; but the continuous method 
is slower for r > 2. The tables also show the continuous method to 
be superior in the size of the error for the more badly behaved case 
x*=t(l-t)/(t + A). 

Table 8. x* = t(l - t)/(t + .4) : r = 2, q = 5. 

1 n 

2 

4 

8 

16 

|_32 

ne 

6 

12 

24 

48 

96 

||a;* -h lloo 
7.37E-4 

5.22E-5 

1.38E-6 

2.62E-8 

4.28E-10 

Ratio 

14.1 

37.8 

52.7 

61.1 

II 2* Xfi ||oo 

3.84E-5 

3.03E-6 

1.63E-7 

6.82E-9 

2.47E-10 

Ratio 

12.7 

18.6 

23.9 

27.6 
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The third example is the two-dimensional integral equation 

,r ,«x / N f1 f1 [x(<T,T)]2dTda . , 

for 0 < s, t < 1. For this equation, with 

if(s, t, o, r, M) = + 2/(s, *) 
(ea + e 5-hc)(e t + e r + c) 

and we give numerical results for c = — .9 and 

(5.11) X(8,t) =€*-*, 

with y(s, i) defined accordingly. 

For the numerical method, we first triangulate the domain D = 
[0,1] x [0,1]. For n > 1, define h = ^Sj = tj = jh,j = 0 , 1 , . . . ,n, 
and Dij = [si_i,Sj] x [tj-\,tj). Divide Dij into two triangles. This 
yields a decomposition of D into 2n2 triangular subregions. On each 
triangle, we use polynomial approximations of degree 2, meaning there 
are six degrees of freedom in choosing the approximate solution Xh(s, t). 
Based on polynomial interpolation error over triangles (see [3]), it is 
straightforward to show 

(5.12) || x* - xh | U = 0(h% || x* - ~xh ||oo= 0(h6). 

For the discrete iterated Galerkin method, the error bound (3.18) 
implies 

(5.13) \\x*-zh\\oo=0(hu) 

with u = Min{6,d - h i } , d = degree of precision of the numerical 
integration over each triangle. 

Two numerical integration schemes wfere used. Method # 1 used a six 
point integration scheme of [13]; see Rule 41 in Table 4 of that paper. 
Method # 2 used the seven point method, T2 : 5 - 1 of [15]. Method 
# 1 has degree of precision 4. However, if method # 1 is applied to 
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each of the two triangles in Dij, then it has degree of precision 5 over 
each such region Dij. Consequently, both methods lead to 

(5.14) || x*-~zh Hoc- 0(h6). 

The numerical results for both methods 1 and 2 are given in Table 9. 
In the table, nt denotes the number of triangles, and ne is the number 
of nonlinear equations to be solved. The errors were approximated by 
the maximum of the errors at the centroids of the triangles. 

Table 9. The numerical solution of (5.10): c — — .9. 

n 

1 

2 

L4 

nt 

2 

8 

32 

ne 

12 

48 

192 

II 
Method # 1 

%* — Zh Ileo Ratio 

4.97E-5 

28 

1.77E-6 

45 

3.91E-8 

Method # 2 

II x* -ih Hoc Ratio 

6.85E-5 

37 

1.86E-6 

48 

3.87E-8 

When n is doubled, then h is halved and formula (5.12) implies the 
error should decrease by a factor of about 64. We observe this only 
approximately. The results with the two cases are of comparable accu
racy. We did not increase n further because the number of equations 
to be solved would have been too great. We do not include results for 
the continuous Galerkin method because the computing time needed 
would also have been too large. The computing time for method # 2 
was approximately 1.6 times that for method # 1. Method # 1 has 
an equal number of integration nodes and basis functions (six per tri
angle), and thus it is a Nyström method. We implemented it as such, 
which increased its speed. 
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