
NUMERICAL METHODS FOR THE RADIOSITY EQUATION AND RELATED
PROBLEMS

by

Sanda Micula

An Abstract

Of a thesis submitted in partial ful�llment of the
requirements for the Doctor of Philosophy

degree in Mathematics in the
Graduate College of The
University of Iowa

December ����

Thesis supervisor� Professor Kendall E� Atkinson



ABSTRACT

In this work� we present numerical methods for the solution of Fredholm integral

equations of the second type� for smooth and piecewise smooth surfaces� We use a

collocation method based on piecewise polynomial interpolation of the solution� We

consider only collocation methods for which the collocation nodes are interior to each

triangular face�

In Chapter II we give the general framework for collocation methods based on

interpolation� We show that interpolation of degree r of the solution leads to an error

in the collocation method of O�hr���� where h is the mesh size of the triangulation�

and so collocation methods of any given order can be developed�

In Chapter III we discuss superconvergent methods� as particular cases of the

methods introduced in Chapter II� The radiosity equation is introduced� along with

some of its properties� Next we discuss two superconvergent collocation methods

based on piecewise quadratic interpolation� for the radiosity equation� followed by

numerical examples� We conclude this chapter with giving generalized superconver	

gent methods based on interpolation of any degree r� considering separately the case

where r is odd and the case where r is even�

In the following chapter the ideas described earlier are used for �nding numerical

solutions of the exterior Neumann problem� since in solving this problem we encounter

integral equations whose properties are very similar to the ones of the radiosity equa	

tion� Considering collocation methods that use only interior nodes is especially useful

in solving this problem� We describe a collocation method based on interpolation of



the solution� for solving the integral equation derived from the exterior Neumann

problem� giving numerical examples for the case of piecewise constant interpolation

of the solution �centroid rule��

In the concluding chapter� we draw some important and interesting conclusions

as well as discuss some possible ideas for future work in this area�
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CHAPTER I

INTRODUCTION

Integral equations are an important subject within applied mathematics� They

are used as mathematical models for many and diverse physical situations� Also�

integral equations occur as reformulations of other mathematical problems� such as

Laplace�s equation�

In this work� numerical methods are presented and analyzed for the solution of

Fredholm integral equations of the second kind of the form

u�P ��
Z
S

u�Q�K�P�Q�dSQ � f�P �� P � S �����

for a smooth or piecewise smooth surface S� In operator form

�I � K�u � f ���
�

We investigate a certain type of collocation method based on piecewise poly	

nomial interpolation of the solution� The general idea of the numerical method is

the following� Begin by triangulating S and then approximate the unknown function

u�P � by functions which are piecewise polynomial in a parametrization over the tri	

angulation of S� Then the numerical solution is found by collocation� meaning that

the approximate form of the solution is substituted into the equation and then the

equation is forced to be true at the collocation node points� leading to a system of

linear equations for determining the approximate solution�

When the surface S is smooth and the operator K is compact on C�S�� it is

relatively easy to do an error analysis of collocation� However� in most applications

the surface will only be piecewise smooth� and in this case the analysis of collocation






is often more di�cult� Also� a lack of smoothness of the kernel function K�P�Q� may

imply that K is no longer compact� nor that any power of it is compact�

Another di�culty in the case where S is not smooth arises in the evaluation of

the unit normal to the surface at points located on an edge or at a corner of S� Also�

there is a problem in de�ning the normal at the collocation points which are common

to more than one triangular face �k� even for smooth surfaces� To avoid all these

problems� we consider only collocation methods for which the collocation points are

interior to each triangular face� This also greatly simpli�es the programming�

For some approximations of the solution� the function space needs to be changed�

namely C�S� must be enlarged to include piecewise polynomial approximants� One

way of doing this is by using the space L��S�� the set of all essentially bounded and

Lebesgue measurable functions on S� with the essential supremum norm k � k��
A general framework and error analysis of these methods is given in Chapter II�

We recall the basic results in interpolation and collocation theory� which we need to

show that interpolation approximations of degree r of the solution lead to an error

in the collocation method of O�hr���� where h is the mesh size of the triangulation�

In certain cases� which are described in detail� the error can be improved� In the last

part of this chapter� we give a procedure for producing a collocation method for the

equation ����� of any desired order�

In Chapter III within the framework described in Chapter II� we investigate

special collocationmethods� arising from certain choices of the node points and certain

types of triangulation� which lead to superconvergence for some collocation solutions

un at the collocation nodes� In the second part of this chapter� we describe such

methods for the radiosity equation� Radiosity is a method of describing illumination

based on a detailed analysis of light re�ections o� di�use surfaces� It is typically





used to render images of the interior of buildings� and it can achieve extremely photo	

realistic results for scenes that are comprised of di�use re�ecting surfaces� In computer

graphics� the computation of lighting can be done via radiosity� The radiosity equation

u�P �� ��P �

�

Z
S

u�Q�G�P�Q�V �P�Q�dSQ � E�P �� P � S ����

and some of its properties are discussed in more detail in Section �
� An introduction

to the use of equation ���� in computer graphics is given in Cohen and Wallace����

along with methods for its numerical solution� In the past� the Galerkin method has

been primarily used to obtain a numerical solution of this equation� with piecewise

constant functions as the approximations� In Atkinson and Chandler��� and Atkinson

and Chien���� the authors investigate di�erent collocation methods for this equation�

using piecewise constant �in Atkinson and Chien���� or piecewise linear �in Atkinson

and Chandler���� functions� The methods described in Section � are obtained using

the same approach� with collocation based on piecewise quadratic interpolation of

the solution� Numerical examples are given for these cases� In the last part of

this chapter� we discuss procedures for developing superconvergent methods for the

radiosity equation� based on interpolation of any degree r of the solution� Two cases

must be di�erentiated� the case where r is an odd number and the case where r is an

even number� The approaches and the results in the error estimates are di�erent for

the two cases�

In the next chapter the ideas described earlier are used for �nding numerical

solutions of boundary integral equation reformulations of Laplace�s equation

�u � � �����

on regions in IR�� In particular� the exterior Neumann problem is studied from this

perspective� This is of interest because� in solving the interior and exterior Neumann

problems using a single layer potential� we are faced with the problem of evaluating



�

the kernel function for �eld points that are on the edges of the triangular faces� where

this kernel is bad behaved at such points� Considering interior collocation nodes solves

this problem� The ideas described in this chapter apply very well to the �interior or

exterior� Dirichlet problem also� but because of the existing theory for this problem�

it is not of such great interest for this case�

In the concluding chapter� we draw some important and interesting conclusions

as well as discuss some ideas for future work in this area�



�

CHAPTER II

PRELIMINARIES FOR COLLOCATION METHODS

��� Preliminaries

Consider the Fredholm integral equation of the second kind

u�P ��
Z
S

u�Q�K�P�Q�dSQ � f�P �� P � S �
���

with S a bounded set in IR�� The kernel function K�P�Q� is assumed to be absolutely

integrable� and it is assumed to satisfy other properties which are su�cient to imply

the �Fredholm Alternative Theorem� �see Atkinson��� Theorem ������� The problem

to be solved is� Given K and f � �nd the function u satisfying equation �
���� Other

properties that u may need to satisfy are problem and method dependent�

In this chapter we describe the general framework for collocation methods based

on piecewise polynomial interpolation of the solution� We consider a certain type of

collocation method� Error formulas and rates of convergence are given� In the end

we describe a procedure for developing a collocation method of any desired order�


���� Interpolation Over the Unit Simplex

We begin by giving some background material needed later� These are well	

known results and can be found in more detail in Atkinson���� Let � denote the unit

simplex� � � f�s� t� j � � s� t� s � t � �g� Introduce u � � � s � t� The coordinates

�s� t� u� are called barycentric coordinates of a point�

Let g�s� t� be a continuous function on �� We will approximate g by a polynomial



�

interpolant p�s� t� of degree r� for some r � ��

pr�s� t� �
X
i�j��
i�j�r

ci�js
itj �
�
�

Since pr has fr � �r����r�
��
 degrees of freedom� we will determine the coe�cients

ci�j from fr interpolation conditions� namely

pr�qk� � g�qk�� k � �� ���� fr �
��

where the fr interpolation nodes will be chosen in the following way�

Let � be a given constant with � � � � �


� De�ne the interpolation nodes by

qi�j �

�
i� �r � i��

r
�
j � �r � j��

r

�
� i� j � �� i� j � r �
���

These fr nodes form a uniform grid over � �see Figure ��� If � � �� some of these

points are on the edges of � � If � � �� then they are symmetrically placed points in

the interior of �� For reasons described in Chapter I� throughout this paper we want

to consider only nodes that are interior to the triangular elements� so we will work

with � � � � �


�

*
*
*

* *
*
*

*
*

.

*
* *

**
*

.

.

.

. .

Figure �� Unit simplex and the interpolation nodes

Denote by li�j�s� t� the corresponding Lagrange interpolation basis functions�

Then for a given g � C���� the formula

pr�s� t� �
X

��i�j�r

g�qi�j�li�j�s� t� �
���



�

is the unique polynomial of degree r that interpolates g�s� t� at the nodes

fqi�j j i� j � �� i � j � rg
The basis polynomials li�j�s� t� of degree r are obtained� as usual� from the

conditions

li�j�qi�j� � �

li�j�ql�k� � �� for l �� i or k �� j

So� now we have the interpolation formula

g�s� t� � X
i�j�r

g�qi�j�li�j�s� t� �
���

Integrating �
��� over �� we obtain the quadrature formulaZ
�

g�s� t�d� � X
��i�j�r

	i�jg�qi�j� �
���

where 	i�j �
Z

�
li�j�s� t�d�� Since the formula �
��� is exact for all polynomials of

degree � r� formula �
��� has degree of precision at least r�

To get a better idea of how to obtain the interpolation nodes and the corre	

sponding interpolation polynomials� we construct them explicitly for the cases r �

�� �� 
� and � We use a sequential ordering of the nodes fq�� ���� qfrg to simplify
the notation and to lead to formulas more readily adaptable to implementation in

computer languages such as Fortran�

Example� Constant Interpolation

In this case� r � �� fr � �� A function g � C��� is approximated by its value

at the unique interpolation node q� � ��� ���

The corresponding basis function is l��s� t� � �� We obtain the constant inter	

polation polynomial

p��s� t� � g�q�� �
���

Formula �
��� becomes

g�s� t� � g�q�� �
���



�

Integrating �
��� over � yields Z
�

g�s� t�d� � �



g��� �� �
����

which has degree of precision � for any � �� �


� and degree of precision � for � �

�


�

A very common choice for the case of constant interpolation is � �
�


� meaning

q� is the centroid of �� In this case formula �
���� has degree of precision �� Later

in this paper we will discuss the collocation method based on this type of constant

interpolation� called the centroid rule�

Example� Linear Interpolation

Now r � � and there are fr �  nodes� denoted fq�� q�� q�g �shown in Figure 
�� where
q� � ��� ��� q� � ��� �� 
��� q� � ��� 
�� �� �
����

*q1

*

*

q2

q3

Figure 
� Unit simplex and linear interpolation nodes

The corresponding Lagrange interpolation basis functions are

l��s� t� �
u� �

�� �� l��s� t� �
t� �

�� �� l��s� t� �
s� �

�� � �
��
�

with u � �� s� t� The approximation

g�s� t� �
�X

i��

g�qi�li�s� t� � p��s� t� �
���



�

gives the associated interpolation formula� It leads to the quadrature formulaZ
�

g�s� t�d� � �

�
�g��� �� � g��� �� 
�� � g��� 
�� ��� � � � � �

�


�
����

This case is discussed in more detail in Atkinson and Chandler����

Example� Quadratic Interpolation

There are � nodes now in the earlier grid� and we denote them by fq�� ���� q�g� using
�
���� and

q	 �
�
��
�� �




�
� q
 �

�
�� �



�
�� �




�
� q� �

�
�� �



� �
�

�
����

�shown in Figure �

*

*

*

q2

q6 q3q1

*

*

*q4 q5

Figure � Unit simplex and quadratic interpolation nodes

Introduce the basis functions

l��s� t� �
u� �

�� �
�


u� �

�� � � �
�

l��s� t� �
t� �

�� �
�


t� �

�� � � �
�

l��s� t� �
s� �

�� �
�


s� �

�� � � �
�

l	�s� t� � �
t� �

�� �
u� �

�� � �
����

l
�s� t� � �
s� �

�� �
t� �

�� �
l��s� t� � �

s� �

�� �
u� �

�� �



��

The approximation of g � C��� is given by

g�s� t� �
�X

i��

g�qi�li�s� t� �
����

which after integration yieldsZ
�

g�s� t�d� � ��
� ��
���� ��� �g��� �� � g��� �� 
�� � g��� 
�� ���

�
��� 
����� ���
���� ���

�
g
�
��
�� �




�
� g

�
�� �



�
�� �




�
�
����

� g
�
�� �



� �
��

This formula has degree of precision 
 for any � � � �
�


�

Example� Cubic Interpolation

In this case the �� nodes� denoted fq�� ���� q��g are the �rst  nodes given in
�
���� and

q	 �
�
��
�



�
q
 �

�
��




� �

�
q� �

�
�


�




� �

�
q� �

�




� ��

�



�
q� �

�




� �� �

�
q �

�
�


� �
�

�
����

q�� �
�
�


�
�



�
These are shown in Figure ��

*

*

*q3q1

q2

*

*

q10

* *

*

*

*q4

q5 q6

q7

q8q9

Figure �� Unit simplex and cubic interpolation nodes



��

De�ne the basis functions

l��s� t� �
�




u� �

�� ��
u� �

�� � � ���
u� �

�� � � 
�

l��s� t� �
�




t� �

�� ��
t� �

�� � � ���
t� �

�� � � 
�

l��s� t� �
�




s� �

�� ��
s� �

�� � � ���
s� �

�� � � 
�

l	�s� t� �
�




u� �

�� �
t� �

�� ��
u� �

�� � � ��

l
�s� t� �
�




u� �

�� �
t� �

�� ��
t� �

�� � � ��

l��s� t� �
�




s� �

�� �
t� �

�� ��
t� �

�� � � �� �
�
��

l��s� t� �
�




s� �

�� �
t� �

�� ��
s� �

�� � � ��

l��s� t� �
�




u� �

�� �
s� �

�� ��
s� �

�� � � ��

l�s� t� �
�




u� �

�� �
s� �

�� ��
u� �

�� � � ��

l���s� t� � 
�
u� �

�� �
t� �

�� �
s� �

�� �
The polynomial

p��s� t� �
��X
i��

g�qi�li�s� t� �
�
��

is the unique cubic polynomial that interpolates g�s� t� at the nodes fq�� ���� q��g�
The interpolation formula �
��� becomes

g�s� t� �
��X
i��

g�qi�li�s� t� �
�

�

Integrating �
�

� over �� we obtainZ
�

g�s� t�d� � �

����� ��� �g��� �� � g��� �� 
�� � g��� 
�� ���

�
��� ���
����� ���

�
g
�
��
�



�
� g

�
��




� �

�
� g

�




� ��

�



�
� g

�




� �� �

�
� g

�
�


� �
��

�
�
�

�
������ � ���� � ���� ��

����� ��� g
�
�


�
�



�
which has degree of precision �



�



���
 Interpolation Error Formulas Over Triangles

We are extending now the procedures described in the previous section to in	

terpolation over a polygonal region R in the plane IR��

Let Tn � f��� �����ng denote a triangulation of R� For now� we assume that
triangles �j and �k can intersect only at vertices or along all of a common edge�

Later we will assume additional properties for the triangulation�

Let the vertices of �k be denoted by fv��k� v��k� v��kg� vj�k � �xj�k� yj�k�� and the

vertices of � by fz�� z�� z�g� where
z� � ��� ��� z� � ��� ��� z� � ��� �� �
�
��

De�ne Tk � �
�����
onto

�k by

�x� y� � Tk�s� t� � uv��k � tv��k � sv��k� u � �� s� t� vj�k � Tk�zj� �
�
��

This type of mapping is an a�ne mapping� The inverse of Tk� denoted by �s� t� �

Qk�x� y�� is also an a�ne mapping� It is straight forward to prove that if p�x� y�

is a polynomial of degree r in �x� y�� then P �s� t� � p�Tk�s� t�� is a polynomial of

degree r in �s� t�� Conversely� if P �s� t� is a polynomial of degree r in �s� t�� then

p�x� y� � P �Qk�x� y�� is a polynomial of degree r in �x� y��

So� having de�ned interpolation over �� we can now use the a�ne mapping

Tk�s� t� to de�ne a corresponding interpolation polynomial over �k� and by extension�

over R� similar to formula �
��� for the unit simplex for qi de�ned in �
����

For a given g � C�R�� de�ne Png by

Png�Tk�s� t�� �
frX
i��

g�Tk�qi��li�s� t�� �s� t� � �� k � �� ���� n �
�
��

The operator norm of Pn� as a mapping from C�R� to L��R�� is given by

kPnk � max
�s�t���

frX
j��

jlj�s� t�j �
�
��



�

In the case � � �� the formula �
�
�� de�nes a projection operator on C�R� and

kPnk �

������	
�� for linear interpolation

�


� for quadratic interpolation

�
�
��

See Atkinson��� p� �����

For � � � �
�


� the function Png is usually not continuous over R� but it

can be regarded as a bounded projection on the larger space L��R�� the set of all

essentially bounded and Lebesgue measurable functions on R� with the norm the

essential supremum k � k�� See Atkinson� Graham and Sloan ��� for details on how to

extend Pn from C�R� to L��R�� For this case of �

kPnk � � � �

�� � �
�
��

for linear interpolation� and

kPnk �

����������������	

�


� if � � � �

��� �p


� � ���� ���

��� ��� � if
��� �p


� � �

�



�
���

for quadratic interpolation�

The following lemmas give error bounds for the approximation of a function by

and interpolatory polynomial� We omit the proofs� as they are relatively straightfor	

ward�

Lemma ����� Let Tn be a triangulation of the polygonal region R� Let g � C�R��

let r � � be an integer� and let Png be de�ned by ������� Then

kg � Pngk� � kPnk	�
n� g� �
���

with 	�
� g� the modulus of continuity of g

	�
� g� � sup
v�w�R
jv�wj��

jg�v�� g�w�j

and 
n the mesh size of the triangulation of R


n � max
��k�n

diameter��k�



��

Lemma ����� Let � be a planar triangle� let r � � be an integer� and assume

g � Cr������ Then� for the interpolation polynomial Png�x� y� of ������

max
�x�y���

jg�x� y�� Png�x� y�j � c
r�� max
i�j��

i�j�r��

max
�������






�
r��g��� �

��i�j






 �
�
�

with 
 � diameter���� The constant c depends on r� but it is independent of both g

and ��

See Atkinson��� p� ���� for the proofs�


��� Interpolation and Numerical Integration
on Surfaces

Recall the integral equation �
��� that we want to solve

u�P ��
Z
S

u�Q�K�P�Q�dSQ � f�P �� P � S

or� in operator form

�I � K�u � f �
��

where

Ku �
Z
S

u�Q�K�P�Q�dSQ �
���

Before proceeding we need some results on compact operators� which will be

needed in studying the solvability of equation �
���� These results are described in

detail in Atkinson��� Chapter ��� and only the most pertinent points are summarized

here�

De�nition ��� Let X and Y be normed vector spaces� and let K � X �� Y be

linear� Then K is compact if the set fKx j kxkX � �g has compact closure in Y �

Compact operators are also called completely continuous operators�

Lemma ����� Let X and Y be normed linear spaces with Y complete� Let K �
L�X� Y �� let fKng be a sequence of compact operators in L�X� Y �� and assume Kn ��
K in L�X� Y �� i� e� kKn � Kk �� �� Then K is compact�

We assume S is a connected piecewise smooth surface in IR�� By this� we mean



��

S can be written as

S � S� 	 S� 	 ��� 	 SJ �
���

with each Sj the continuous image of a polygonal region in the plane

Fj � Rj
�����
onto

Sj� j � �� ���� J �
���

Generally� we will need to assume that the mappings Fj are several times continuously

di�erentiable�

To create triangulations for S� we �rst triangulate each Rj and then map this

triangulation onto Sj� Let f b�j
n�k j k � �� ���� njg be a triangulation of Rj� and then

de�ne

�j
n�k � Fj� b�j

n�k�

This yields a triangulation of S� which we refer to collectively as Tn � f��� �����ng�
We make the following assumptions concerning this triangulation�

T�� The set of all vertices of the surface S is a subset of the set of all vertices of the

triangulation Tn�

T�� The union of all edges of S is contained in the union of all edges of all triangles

in Tn�

T�� If two triangles in Tn have a nonempty intersection� then that intersection con	
sists either of �i� a single common vertex� or �ii� all of a common edge�

We call triangulations satisfying T� 	 T conforming triangulations�

Let �k be some element from Tn� and let it correspond to some b�k� say b�k 
 Rj

and �k � Fj� b�k�� Let f�vk��� �vk��� �vk��g denote the vertices of b�k� De�nemk � �
�����
onto

�k

by

mk�s� t� � Fj�u�vk�� � t�vk�� � s�vk���� �s� t� � �� u � �� s� t �
���



��

Now we can de�ne interpolation and numerical integration over a triangular surface

element � by means of a similar formula over �� Recall the uniform grid over �

de�ned in �
���� which we refer to collectively as fq�� ���� qrg� For g � C�S�� restrict g

to some � � Tn and de�ne
�Png��mk�s� t�� �

frX
i��

g�mk�qi��li�s� t� �
���

This will de�ne an interpolation formula over the surface S� The error bounds given

in Lemma 
���� and Lemma 
���
 can be easily extended to similar results for surfaces�

See Atkinson��� Section ����

Next� we brie�y describe the general framework for the collocation and iterated

collocation methods� Let X be a Banach space� let fXm j m � �g be a sequence of
�nite dimensional subspaces� Let Pm � X �� Xm be a linear operator with

Pmu � u� u � Xm �
���

In attempting to solve the problem �
��� we will approximate it by solving

Pm�I � K�um � Pmf� um � Xm �
����

This is the form in which the method is implemented as it leads directly to equivalent

�nite linear systems� To make an error analysis� we rewrite �
���� in the equivalent

form

�I � PmK�um � Pmf� um � X �
����

where um is the solution of �
����� This is equivalent to �
����� since Pmum � um�

We have the following result�

Theorem ����� Let X be a Banach space� K � X �� X a bounded operator with

I � K � X
�����
onto

X� Assume that

kK � PmKk �� � as m ��� �
��
�

Then for all su�ciently large m� say m � N � the operator �I � PmK��� exists as a



��

bounded operator from X to X� Moreover� it is uniformly bounded

sup
m�N

k�I � PmK���k �� �
���

For the solutions of ������ and ���	
�

u� um � �I � PmK����u� Pmu� �
����

�

kI � PmKkku� Pmuk � ku� umk � k�I � PmK���k � ku� Pmuk �
����

This leads to ku� umk converging to zero at exactly the same speed as ku� Pmuk�
To apply the above theorem� we need to know whether kK � PmKk �� � as

m ���� The following lemma addresses this question�
Lemma ����� Let X be a Banach space� and let fPmg be a family of bounded pro�

jections on X with

Pmu �� u as m ���� u � X �
����

Let K � X �� X be compact� Then

kK � PmKk �� � as m ��� �
����

The proofs of Theorem 
���� and Lemma 
���� are fairly easy and they can be

found in Atkinson��� Section ���� The last lemma includes most cases of interest� but

not all� For some approximation processes� Pmu �� u for most u � X� but not all u�

In such a case it is necessary to show directly that kK � PmKk �� �� Since um �� u

if and only if Pmu �� u� such methods are not convergent for some solutions u�

For the iterated collocation method� consider the iteration

u�k��� � f �Ku�k�� k � �� �� ��� �
����

If um is the solution of the collocation equation �
����� de�ne the iterated collocation

solution by

�um � f �Kum �
����

Then

Pm�um � Pmf � PmKum � um �
����



��

and

�I � KPm��um � f �
����

Combining �
���� and �
����� we obtain

u� �um � �f �Ku�� �f �Kum� � K�u� um� �
��
�

ku� �umk � kKk � ku� umk �
���

which proves that the convergence of �um to u is at least as rapid as that of um to u�

Also� we see that �I � PmK��� exists if and only if �I � KPm�
�� exists� since

�I � KPm�
�� � I �K�I � PmK���Pm

�I � PmK��� � I � Pm�I � KPm�
��K �
����

We can choose to show the existence of either �I � PmK��� or �I � KPm�
��� whichever

is the more convenient� and the existence of the other inverse will follow immediately�

Bounds on one inverse in terms of the other can also be given using �
�����


���� Collocation as a Projection Method in L��S�

We want to solve the equation �
��� using a collocation method based on a

piecewise polynomial interpolation operator �
���� If we choose X � C�S�� Xr to be

the set of polynomials of degree � r and Pn de�ned by �
���� then Png is usually not

continuous� If the standard type of collocation error analysis is to be carried out in

the context of function spaces� as described in the previous section� then C�S� must

be enlarged to include piecewise polynomial approximations Png� One way of doing

this is by using the space L��S�� the set of all essentially bounded and Lebesgue

measurable functions on S� with the norm the essential supremum k � k�� Here is
a brief outline on how Pn can be extended to a projection operator on L��S� �for

details� see Atkinson� Graham and Sloan�����

We call on the mathematical construction of point functions de�ned and ana	

lyzed in Atkinson� Graham and Sloan���� Let C�S� denote the subspace of L��S�



��

consisting of all cosets based on continuous functions

C�S� � f�g� j g � C�S�g� g � �g� �
����

For a point P � S� de�ne a linear functional on C�S� by

lP ��g�� � g�P � �
����

Then klPk is bounded with klPk � ��
Then using the Hahn	Banach Theorem �see Rudin������ the functional lP can be

extended �albeit not uniquely� to a linear functional on all of L��S� with preservation

of norm� We continue with the same notation for the extension� Let �g� � L��S� and

suppose g is continuous at a point P � Then

lim
Q�P

lQ��g�� � lP ��g�� � �Png��P �

Thus the value of lP ��g�� possesses the expected value without requiring that g � C�S��

Other properties of the extension are studied in Atkinson� Graham and Sloan����

Now� the operator Pn of �
��� can be extended to L
��S��

�Pn�g���P � �
frX
j��

lmk�qi� ��g�� li�s� t�� P � S� �g� � L��S� �
����

where� here� lP denotes the extension� The range of Pn is the set of all cosets of

functions that are piecewise polynomial �of degree � r� over the triangulation Tn
With this new de�nition of Pn� the collocation equation may again be written

in the form �
����� and the rest of the analysis is then entirely analogous to the

continuous case� Thus the usual next step is to ensure that �
��
� holds� where PnK
is now considered as an operator on L��S�� A su�cient condition for this is that

lim
n��

kPng � gk� � �� g � C�S�

with the assumption that K is compact as an operator from L��S� to C�S�� This

follows� using a straightforward modi�cation of the arguments given in the continuous

case�




�

��� A Procedure for Developing a Method

of Arbitrarily High Order

Given an integral equation of the form �
����

u�P ��
Z
S

u�Q�K�P�Q�dSQ � f�P �� P � S

we want to describe a procedure for obtaining a collocation method based on inter	

polation of degree r for solving the equation �
��� with an error of order O�hr����


�
�� Error Analysis of the Collocation Method

We consider the same framework as in the previous section� Let S be a smooth

surface� satisfying the conditions �
��� and �
���� and Tn � f��� �����kg be a con	
forming triangulation of S� Let

�Png��mk�s� t� �
frX
i��

g�mk�qi��li�s� t�� g � C�S�� P � mk�s� t�

for qi and li described in �
��� and �
���� and mk the application from �
����

We seek solutions of �
��� of the form

un�P � �
frX
j��

un�vk�j�lj�s� t�� P � mk�s� t� � �k� vk�j � mk�qj�� k � �� ���� n �
����

Substitute �
���� into �
���� To determine the values fun�vk�j�g� force the equation re	
sulting from the substitution to be true at the collocation points fq�� ���� qrg described
in �
���� This leads to the linear system

un�vi� �
nX

k��

frX
j��

un�vk�j�
Z
S

K�vi� mk�s� t��lj�s� t� �

j�Dsmk �Dtmk��s� t�jd� � f�vi�� i � �� ���� frn �
����

which is of order frn� For the error analysis� the following is true�

Theorem ����� Assume S is a smooth surface in IR� satisfying ������ and ������

with each Fj � Cr��� Assume that equation ���
� is uniquely solvable for all functions

f � C�S�� Assume K � L��S� �� C�S� is compact and u � Cr���S�� Then for all

su�ciently large n� say n � n�� the operators I � PnK are invertible on C�S� and

have uniformly bounded inverses� Moreover� for the true solution u of ���
� and the




�

solution un of ���	
�

ku� unk� �
����I � PnK���

��� � ku� Pnuk� �
����

Furthermore� if f � Cr���S�� then

ku� unk� � O�hr���� n � n� �
����

Proof� Consider Pn as a projection operator from L��S� into itself� It is

relatively easy to show that Pnu �� u as n �� �� Since K is compact� by Lemma


���� we have that kK � PnKk� �� � as n �� �� From Theorem 
���� and the

assumption that the equation �
�� � is solvable� it follows that the operators �I�PnK�
are invertible on C�S� and have uniformly bounded inverses for all su�ciently large

n� say n � n��

The bound �
���� follows from the identity

u� un � �I � PnK����u� Pnu�

The bound �
���� follows from Lemma 
���
� By �
����� the same bound holds for

ku� �unk��
�

Although we stated this theorem for the smooth surface case only� we mention that

it can be easily generalized to piecewise smooth surfaces�

It is clear now that the accuracy of a collocation method based on piecewise

polynomial interpolation depends on the degree of precision of the interpolation for	

mula� Theorem 
�
�� asserts that an interpolation formula having degree of precision

r leads to an error in the collocation method of order at least O�hr���� Since going

to high degree polynomials can signi�cantly complicate formulas and computations�

a natural question� then� comes to mind� Using an interpolation formula with the

degree of precision r� can we do any better than O�hr��� in our error bounds� The

answer is sometimes �yes�� There are two ways that we can improve the precision of







the interpolatory quadrature formula� which in turn� will increase the accuracy of the

associated collocation method�

One of them has to do with the triangulation of the surface and the way we

re�ne it� Given a triangulation Tn of a polygonal region R with grid size 
n� at each

step we re�ne it to a new triangulation with a smaller grid size� In most �nite element

methods for solving partial di�erential equations it does not matter how we do this

re�nement as long as 
n �� � as n �� �� however� when integration is involved�
there is an �optimal� type of triangulation that can lead to cancellation of errors�

A simple example may illustrate how that can happen� Let g�s� t� be de�ned

on the unit simplex � � f�s� t� j � � s � t � �g� Approximate it by a constant
polynomial

g�s� t�  g��� ��� �s� t� � � �
��
�

with � �� �


� This formula has degree of precision �� Integrating it over �� leads toZ

S

g�s� t�d� � �



g��� �� �
���

which is exact for all polynomials of degree �� If we extend it to R � � 	 ��� where
�� � f�s� t� j �� � s � t � �g� which is symmetric to � about the origin �see Figure
�� and consider as a node the re�ection of ��� ��� which is �������� we obtainZ

R

g�s� t�d� � �



�g ��� �� � g�������� �
����

which has degree of precision �� being exact not only for all constants� but also for s

and t� The left	hand side of �
���� is � because �� is symmetric to � about the origin�

while the right side of �
���� is � by the fact that both s and t are odd functions�

So it appears that by imposing some symmetry in our triangulations Tn� we
will sometimes obtain an increase in the degree of precision of a quadrature formula

and thus in the rate of convergence of the resulting numerical integration formula�

Given a triangle � � Tn� we will re�ne it into smaller triangles by using straight line






*

(-1,0)

*

(0,0) (0,1)

(1,0)

(0,-1)

Figure �� The unit simplex and its symmetric

segments to connect the midpoints of the three sides of �� The four new triangles

obtained this way will be congruent and similar to the original triangle �� After such

a re�nement of all the triangles in Tn� the new triangulations T	n will have four times
as many triangles as Tn� As for the grid size� we have


	n �
�




n �
����

We will call such triangulations obtained with this form of re�nement symmetric

triangulations�

If we denote by

En�g� �









Z
�

g�s� t�d� �
nX

k��

g�qi�
frX
j��

Z
�k

lj�k�s� t� d�








 �
����

the error for a composite numerical integration of the form �
��� with fqj�kg and flj�kg
de�ned similarly to those de�ned in �
��� and �
��� �only speci�cally for each triangle

�k�� and if the integration method has degree of precision d� then the ratio

En�g�

E	n�g�
�
����

of the errors �
���� should equal approximately 
��d����

If the initial degree of precision d from integrating over � is an even number�

and if we are using a symmetric triangulation scheme� then the degree of precision is




�

increased e�ectively to d��� as was the case in our previous example� since integrals

over symmetric triangles of polynomials of odd degree are �� In this case it is possible

to improve the results in Theorem 
�
��

Theorem ����� Assume all the conditions in Theorem ����
 are satis�ed� Further�

more� assume that Tn is a symmetric triangulation and that the degree of precision r

of the interpolation formula is an even number� Assume u � Cr���S�� Then� for all

su�ciently large n� say n � n�� the operators I � KPn are invertible on C�S� and

have uniformly bounded inverses� Moreover� if f � Cr���S� for the true solution u of

���
� and the solution �un of ���	�

ku� �unk� � O�hr���� n � n� �
����

Proof� Since we use a symmetric triangulation� essentially all the triangles in

Tn can be partitioned into pairs of symmetric triangles �as in Figure ���
There will be at most O�

p
n� � O�h��� triangles not included in such pairs of

triangles� Proceeding as in the proof of Theorem 
�
��� the contribution to the errors

over the set of all such symmetric pairs is O�hr���� since the degree of precision of

the integration formula is now r � �� The remaining triangles of number O�h��� will

have a composite error of

O�h��� � Area ���O�hr��� � O�h��� �O�h�� �O�hr��� � O�hr��� �
����

Combining the two errors� we have �
�����

�

Recall the interpolation nodes that we use� given in �
���� They depend on a

parameter �� with � � � � �


� As long as � �� � �so that the nodes are not on the

edges of �� and � �� �


�so that if r � �� � �� �� 
��� we have the liberty to choose

any value for �� As it turns out� some particular values for � lead to higher degrees

of precision of the quadrature formula �
����




�

As an example� consider the linear interpolation case� which leads to the quadra	

ture formula �
����Z
�

g�s� t�d� � �

�
�g��� �� � g��� �� 
�� � g��� 
�� ���

As we mentioned before� this formula has degree of precision � for any � � � �
�


�

However� if � �
�

�
� formula �
���� becomesZ

�

g�s� t�d� � �

�

�
g
�
�

�
�
�

�

�
� g

�
�

�
�





�
� g

�




�
�

�

��
�
����

which has degree of precision 
� The proof is a straightforward computation with

the choices g�s� t� � s�� st� t�� Moreover� if we integrate it over R � � 	 ��� then the
formula Z

�

g�s� t�d� � �

�

�
g
�
�

�
�
�

�

�
� g

�
�

�
�





�
� g

�




�
�

�

�

� g
�
��
�
���
�

�
� g

�
��
�
��



�
� g

�
�


���
�

��
�
����

has degree of precision � since this is the case described prior to Theorem 
�
�
� The

collocation method using piecewise linear interpolation with � �
�

�
� for the radiosity

equation is described in great detail in Atkinson and Chandler���� We will discuss

at length particular choices of � for the quadratic interpolation case in the following

chapter�


�
�
 Determining the Degree of Precision
of a Quadrature Formula

What concerns us now is how to �nd an e�cient way of determining the degree of

precision of a quadrature formula� To simplify the calculations and the ideas� we will

restrict ourselves for the remainder of this chapter to integration formulas over the

unit simplex Z
�

g�s� t�d� 
frX
j��

g�qj�
Z
�

lj�s� t�d� �
��
�

for gj and lj given in �
��� and �
����




�

Again� let En be the error in formula �
����

En�g� �
Z
�

g�s� t�d� �
frX
j��

g�qj�
Z
�

lj�s� t�d� �
���

To show that formula �
��� has degree of precision r� we must verify that it is exact

for all polynomials sitj� � � i � j � r� We need to �nd an easier way�

We will follow closely the ideas given in Sobolev����� Consider �s� t� � �� u �

�� s� t� and the symmetric group S� of permutations in the following context

S� � fT�� T�� ���� T
g �
����

where the functions Ti � � �� �� i � �� ���� � are given by

T��s� t� � �s� t�

T��s� t� � �u� t�

T��s� t� � �s� u�

T��s� t� � �t� s� �
����

T	�s� t� � �u� s�

T
�s� t� � �t� u�

Theorem ����� For the quadrature formula ����� to be exact for all polynomials of a

given order r� it is necessary and su�cient that it be exact for all invariant polynomials

with respect to S�� i� e� for those which are unchanged under all mappings T�� ���� T
�

Proof� It is straightforward to verify thatZ
�

g�s� t�d� �
Z
�

g�Ti�s� t��d�� i � �� ���� �

frX
j��

g�qi�
Z
�

lj�s� t�d� �
frX
j��

g �Ti�qi��
Z
�

lj �Ti�s� t�� d� �
����

which means that

En�g� � En�g � Ti�� i � �� ���� � �
����




�

Then we can write

En�g� �
�

�


X
i��

En�g � Ti� � �

�
En

�

X

i��

�g � Ti�
�

�
����

Denote by �g the mean of the function g over the group S�

�g �

X

i��

g � Ti �
����

Then� formula �
���� can be written

En�g� �
�

�
En��g� �
����

By the properties of S�� �g is invariant under all permutations Ti� i � �� ���� �

�g � Tk � �g� k � �� ���� � �
����

By �
����� En�g� � � if and only if En��g� � �� which means that En�g� � � for all

polynomials g of degree � r is equivalent to En��g� � � for all polynomials �g of degree

� r that are invariant under all transformations Ti� i � �� ���� ��

�

This reduces our task to �nding polynomials of a given degree that are invariant

under all transformations Ti� i � �� ���� �� i�e� by �
���� polynomials of a given degree

that are symmetric in s� t� and u� Then� if formula �
��� is exact for such polynomials�

it will also be exact for all polynomials of the given degree�

The following theorem characterizes completely such polynomials that are sym	

metric in s� t� and u�

Theorem ����� Let �� � s� t� s�� st� t� and �� � st� s�t� st�� Then g�s� t� is

a polynomial symmetric in s� t� and u if and only if g is a polynomial in �� and ���

Proof� We give only a sketch of the proof� The proof uses �eld theory and

Galois theory� so we do not go into details� The main idea is the following� It is known

that the polynomials symmetric in  variables� say x�� x�� x�� must be polynomials in

��� x� � x� � x�




�

�
� x�x� � x�x� � x�x�

�� x�x�x�

Let x� � s� x� � t� x� � u� �Since u is not an independent variable�

the well	de�nedness of some embedding mappings must be veri�ed� For details� see

Hungerford����� Then� we have

��� s� t� u � �

�
� st� su� tu � st� �s� t���� s� t� � ��

�� stu � st��� s� t� � ��

which proves our assertion� �

Combining Theorem 
�
� and 
�
��� we obtain that the quadrature formula

�
��� has degree of precision r if and only if it is exact for all polynomials in �� and

�� of degree � r� In the following table we give such polynomials for degrees �� ���� �

�c�� c�� ���� c� denote generic constants��

r Polynomial

� c�

� c�

� c� � c���

� c� � c��� � c���

� c� � c��� � c��� � c��
�
�

� c� � c��� � c��� � c��
�
� � c	����

� c� � c��� � c��� � c��
�
� � c	���� � c
�

�
� � c��

�
�

Table �� Polynomials in �� and �� of degrees �� ���� �




�

In conclusion� to develop an integration scheme of a given order� we construct

the interpolation polynomial �
���� integrate it� approximate the integral of a function

by the integral of the polynomial in �
���� and use the error bounds given in Theorems


�
�� and 
�
�
� By means described above we may improve the rate of convergence

given in Theorems 
�
�� and 
�
�
�

Finding high order interpolatory formulas comes down to solving a system of

equations involving the problem parameter� We developed procedures for interpola	

tion nodes that make use of one parameter� �� Other parameters can be introduced

� see the discussion at the beginning of Chapter V��



�

CHAPTER III

SUPERCONVERGENT METHODS

FOR INTEGRATION AND COLLOCATION

In this chapter� we consider some particular cases of the methods described in

Chapter II� We begin by discussing some collocation methods� We introduce the

radiosity equation� describe its properties and its solvability� We conclude by in	

troducing a particular piecewise quadratic collocation method for determining the

numerical solution of the radiosity equation� We show that this method is super	

convergent at the collocation nodes and consider numerical examples to illustrate

that� We also discuss general superconvergent collocation methods for the radiosity

equation based on interpolation of degree r�

��� Superconvergent Collocation Methods

Consider the integral equation

u�P ��
Z
S

u�Q�K�P�Q�dSQ � f�P �� P � S ����

for S a smooth surface in IR�� with K and f continuous functions�

Let Tn � f��� �����kg be a triangulation of S and mk � � �� �k be de�ned as

in �
���� Recall the interpolation formula

g�s� t� �
frX
j��

g�qj�lj�s� t�� g � C�S� ��
�

Let

Png�mk�s� t�� �
frX
j��

g�mk�qj��lj�s� t�� P � mk�s� t� � �k ���

with the nodes fq�� ���� qfrg and fl�� ���� lfrg given by �
��� and �
����



�

De�ne a collocation method using ���� Substitute

un�P � �
frX
j��

un�vk�j�lj�s� t�� P � mk�s� t� � �k

vk�j � mk�qj�� k � �� ���� n ����

into ����� This leads to the linear system

un�vi� �
nX

k��

frX
j��

un�vk�j�
Z
�

K�vi� mk�s� t��lj�s� t� �

j�DSmk �Dtmk��s� t�jd� � f�vi�� i � �� ���� nfr ����

We have shown in Theorem 
�
�� that under suitable assumptions this method has

the error

ku� unk� � O�hr��� ����

where h is the mesh size of the triangulation Tn� Sometimes at the collocation node
points� the collocation method converges more rapidly than over all S� in which case

lim
n��

max
��i�nfr

ju�vi�� �un�vi�j
ku� unk� � � ����

Such methods are superconvergent at the collocation node points�

Let us examine more carefully the terms in ����� For simplicity� we work with

the solution �un of the iterated collocation equation �
����� This should cause no

problems� since we know that the convergence of �un to u is at least as rapid as that of

the solution of the collocation equation �
���� to u� and the inverses for the collocation

equation and iterated collocation equation are related by the identities

�I � KPn�
�� � I �K�I � PnK���Pn

�I � PnK��� � I � Pn�I � KPn�
��K ����

�recall �
���� for details�� Moreover� �u�vi� � un�vi� at all collocation nodes�

By looking at the linear system associated with

�I � KPn��u� �un� � K�u� Pnu� ����






we have

max
��i�nfr

ju�vi�� �un�vi�j � c max
��i�nfr

jK�I � Pn�u�vi�j �����

�see Atkinson��� p� ������ So� now we can focus on �nding errors for K�I � Pn�u�vi��

First� we need some assumptions for the interpolation over �� Recall that for

g � C���� we are considering interpolation of degree r over ��

g�s� t� � �L�g��s� t� �
frX
j��

g�qj�lj�s� t� �����

This leads to the numerical integration formulaZ
�

g�s� t�d� �
Z
�

L�g�s� t�d� ���
�

which has a degree of precision of at least r� Assume there is a value � � �� �
�


such

that for qj and lj de�ned with � � ��� the formula ���
� is exact for all polynomials

in ��� �� �introduced in Theorem 
�
��� of degree � r��� i� e� has degree of precision

r � �� For the remainder of this section� we will assume � � ���

Now� let � 
 IR� be a planar triangle with vertices fv�� v�� v�g and de�ne the
mapping m� � � �� � as in �
���� For g � C���� de�ne

L�g�x� y� �
frX
j��

g�m� �qj��lj�s� t� ����

which is a polynomial of degree r in the parametrization variables s and t� interpo	

lating g at the nodes fm� �q��� ���� m� �qfr�g�
De�ne a numerical integration formula over � byZ

�

g�x� y�d� �
Z
�

L�g�x� y�d� �����

By our earlier assumption on ��� this has degree of precision at least r � �� In what

follows� for di�erentiable functions g� we will use the notation

jDkg�x� y�j � max
��i�k






�kg�x� y��xi�yk�i






 �����

We have the following result�

Lemma ����� Let � be a planar right triangle and assume the two sides which form





the right angle have length h� Assume � � ��� Let g � Cr������ � C����� Then






Z
�

 �x� y��I � L� �g�x� y�d�







 � chr��

�Z
�

�j j� jD j�d�
�� �max

�

n
jDr��gj� jDr��gj

o
�����

where c denotes a generic constant�

Proof� Let pi�x� y� denote Taylor expansions of g around a suitable point in

� � of degree i� for i � r� r � �� Then� since g � Cr������ we have that

kg � pik� � chi��kDi��gk�� i � r� r � � �����

with k � k� denoting the uniform norm on C����

From ����� it follows that

kpr�� � prk� � kg � pr��k� � kg � prk�
� chr��kDr��gk� � chr��kDkgk� �����

� chr��
�
hkDr��gk� � kDr��gk�

�
Since  � C����� there is a constant  � such that

k �  �k� � ch jD j �����

To shorten the notation� let L�

� � I � L� � We can writeZ
�

 L�

�gd� �
Z
�

 L�

� �g � pr���d�

�
Z
�

� �  ��L�

� �pr�� � pr�d� ��
��

To see why ��
�� is true� note �rst that

L�

�pr � � ��
��

since formula ����� has degree of precision r� Also � by our assumption that for

� � ��� formula ���
� has degree of precision r � �� we have thatZ
�

 �L�

�pr��d� � � ��

�

Then� using these facts� ��
�� follows from expanding the right side and sim	

plifying� Taking norms in ��
�� and using the bounds in ������ ������ and ������



�

we have 






Z
�

 L�

�gd�







 � chr��kL�

�k �
Z
�

j jd� � chkL�

�k � chr�� �
�
hkDr��gk� � kDr��gk�

�
�
Z
�

jD jd� ��
�

The term on the right of ��
� is bounded by

chr��

�Z
�

�j j� jD j�d�
�� �max

�

n
jDr��gj� jDr��gj

o
which proves ������

�

This result can be extended to general triangles� but then the derivatives of g

and  will involve the mapping m� from �
���� Let h��� denote the diameter of �

and h���� the radius of the circle inscribed in � and tangent to its sides� De�ne

r��� �
h���

h����
��
��

Assume that for our triangulations Tn � f�n�kg� n � �� we have

sup
n

�
max

�n�k�Tn
r��n�k�

�
�� ��
��

Condition ��
�� prevents the triangles �n�k from having angles which approach � as

n ���� Then� Lemma ���� can be generalized to arbitrary triangles as follows
Corollary ����� Let � be a planar triangle of diameter h� let g � Cr����� and

 � C����� Assume � � ��� Then






Z
�

 �x� y��I � L� �g�x� y�d�







 � c�r����hr��

�Z
�

�j j� jD j�d�
���max

�

n
jDr��gj� jDr��gj

o
��
��

where c�r���� is some function of r���� with r��� from ����	��

Proof� Let �� be a right triangle� Then using a mapping of the form �
��� �

m�� � �� �� � � we can writeZ
�

 �x� y��I � L� �g�x� y�d� � j�Dsmk �Dtmk�j �
Z
��

 �m�� �s� t���I � L� �g�m���s� t��d��

��
��



�

which shows that this case can be reduced to the case where � is a right triangle

whose two sides which form the right angle have length h� keeping in mind that the

derivatives of  and g will depend on r���� Note that in this case Dsmk �Dtmk is a

constant�

�

We want to apply the above results to the individual subintegrals in

Ku�vi� �
nX

k��

Z
�

K�vi� mk�s� t��u�mk�s� t�� �

j�Dsmk �Dtmk��s� t�j d� ��
��

Let

g�x� y� � u�mk�s� t�� j�Dsmk �Dtmk��s� t�j

 �x� y� � K�vi� mk�s� t�� ��
��

Then� with the de�nition of L� given in ����� the term in the right side of ������

jK�I � Pn�u�vi�j can be bounded by
nX

k��









Z
�k

 �x� y��I � L� �g�x� y�d�








 ����

In the following� by g � Ck�S� we mean g � C�S� and g � Ck�Sj� �i�e g � Fj �
Ck�Rj��� j � �� ���� J � for Rj and Fj as in �
��� and �
����

Theorem ����� Assume the hypotheses of Theorem ����
 with each parametrization

function Fj � Cr��� assume u � Cr���S� and K � C��S� with respect to Q� Assume

the triangulation Tn of S satis�es ������� Then

max
��i�nfr

ju�vi�� �un�vi�j � chr�� ����

Proof� Following ������ we will bound

max
��i�nfr

jK�I � Pn�u�vi�j
using ����� On each triangle �k� apply Lemma ���� or Corollary ���
� �c�r���� of

Corollary ���
 will be denoted c to simplify the notation�� Since u � Cr���S� and



�

K � C��S� with respect to Q� we have that

jDQKj �



Diu




 � i � r � �� r � 
 ��
�

are bounded�

Then� by ����

max
��i�nfr

jK�I � Pn�u�vi�j �
nX

k��

chr��
Z
�k

d� ���

Since there are n � O�h��� triangles� and the integral in the right side of ���� is

the area of �k� which is O�h
��� ���� leads to

max
��i�nfr

jK�I � Pn�u�vi�j � chr�� ����

By ������ this proves �����

Note that although in this case the result ���� can be proven in an easier

fashion� we prefer to give this proof� since we want to use it later for other cases�

�

So� for � � ��� the collocation method de�ned by ��� is superconvergent�

These results can still be improved� sometimes� using symmetric triangles� This is

discussed more in Section ��

��� The Radiosity Equation and Its Properties

Radiosity� an important quantity in image synthesis� is de�ned as being the

energy per unit solid angle that leaves a surface� The photometric equivalent is

luminosity� The radiosity equation is a mathematical model for the brightness of a

collection of one or more surfaces� The equation is

u�P �� ��P �

�

Z
S

u�Q�G�P�Q�V �P�Q�dSQ � E�P �� P � S ����

where u�P � is the radiosity� or the brightness� at P � S� E�P � is the emissivity at

P � S� the energy per unit area emitted by the surface�

The function ��P � gives the re�ectivity at P � S� i� e� the bidirectional re�ection



�

distribution function� We have that � � ��P � � �� with ��P � being � where there is

no re�ection at all at P � The radiosity equation is derived from the rendering equation

under the radiosity assumption� all surfaces in the environment are Lambertian di�use

re�ectors� What this means is that the re�ectivity ��P � is independent of the incoming

and outgoing directions and� hence� of the angle at which the re�ection takes place�

Thus� ��P � can be taken out from under the integral of a more general formulation

�the rendering equation� see Cohen and Wallace����� leading to �����

The function G� a geometric term� is given by

G�P�Q� �
��Q� P � � nP � ��P �Q� � nQ�

jP �Qj	

�
cos �P � cos �Q
jP �Qj� ����

where nP is the inner unit normal to S at P � �P is the angle between nP and Q�P �

and nQ and �Q are de�ned analogously�

The function V �P�Q� is a visibility function� It is � if the points P and Q are

�mutually visible� �meaning they can �see each other� along a straight line segment

which does not intersect S at any other point�� and � otherwise� Surfaces S for which

V � � on S are called unoccluded� and this is the case that we will consider here�

More about the radiosity equation can be found in Cohen and Wallace����

We can write ���� in the form

u�P ��
Z
S

K�P�Q�u�Q�dSQ � E�P �� P � S ����

with

K�P�Q� �
��P �

�
G�P�Q�V �P�Q�� P� Q � S ����

or� in operator form

�I � K�u � E ����



�

�
�� Properties of the Radiosity Equation

We consider only the case that S is a smooth surface� although it need not be

connected� The properties of the integral operator K are not yet fully understood

when S is not a smooth surface� but they appear to be similar to the properties of

the double layer boundary integral operator on piecewise smooth surfaces from the

subject of potential theory�

Assume S has a local representation at each P� � S� i�e� there is a plane tangent

to S at P� with the surface given locally by

� � f��� �� ��� � in a neighborhood about P� �����

We need to assume that each such function f is several times di�erentiable� Let S

be a smooth unoccluded surface in IR�� Decompose S into a �nite union

S � S� 	 � � � 	 SJ �����

with each Sj a smooth surface and intersecting each other along common edges at

most� Consider a parametrization function

Fj � Rj
�����
onto

Sj ���
�

with Rj a closed simply connected polygon in IR
� and Fj a function having a certain

degree of smoothness �later� in Section � we will impose conditions on the smooth	

ness of Fj�� Then having triangulations for the regions Rj� j � �� ���� J will enable

us to produce a triangulation for S� as described earlier in Section 
���� following

�
����

The function G�P�Q� given in ���� has a singularity at P � Q and is smooth

otherwise� We also have

jG�P�Q�j � c� P�Q � S� P �� Q ����

since

jcos �P j � c jP �Qj � jcos �Qj � c jP �Qj �����



�

where c denotes a generic constant independent of P and Q� For the proof of ������

see Mikhlin���� pp� ��	����

If the surface S is smooth and since formula ���� holds� it is relatively easy

to prove that the integral operator K of ���� is compact as an operator on either

C�S� or L��S� into itself �see Mikhlin���� pp� ���	��
���

Next� let us examine the norm of K when considered as an operator from C�S�

to C�S�� We have the following� which is proven in Atkinson and Chandler����

Lemma ����� Let S be the boundary of a convex open set ! and assume S is a

surface to which the Divergence Theorem can be applied� Let P � S� and let S be

smooth in an open neighborhood of P � Then

G�P�Q� � �� for Q � S �����

and Z
S

G�P�Q�dSQ � � �����

It then follows that

K�P�Q� � �� P� Q � S �����

since V �P�Q� and ��P � are also nonnegative functions� In the case where S is the

unit sphere x��y�� z� � �� a straightforward computation shows that G�P�Q� � �

�
�

�
�
 Solvability and Regularity
of the Radiosity Equation

The solvability theory for the radiosity equation ���� is relatively straightfor	

ward� being based on the Geometric Series Theorem�

Let S be a smooth unoccluded surface �not necessarily connected�� Thus the

normal nP is to be a continuous function of P � S� In addition to the radiosity

assumption �discussed at the beginning of �
�� we will also assume that the re�ectivity



��

function ��P � � C�S� and that it satis�es

k�k� � � �����

From the physical point of view� what ����� means is that the surface does not re�ect

���" of all the light that it receives� which is a reasonable assumption�

For the regularity of the solution of ����� we have

Lemma ����� Let m � � be an integer� S a smooth surface satisfying ���	
�� with

the parametrization functions of ���	�� Fj � Cm���Rj�� j � �� ���� J� Also� assume the

re�ectivity function � � Cm���S�� Then

u � Cm�S�� Ku � Cm���S� �����

Proof� The proof of this result is based mainly on the fact that

�iG�P�Q�

�P i
� O

�
�

jP �Qji
�

�����

which is proven later �see Theorem ����� In this work� by
�F �P �

�P
we denote gener	

ically the derivatives
�F �P �

�x
�
�F �P �

�y
� where P � P �x� y��

To get an idea of how the proof goes� consider the case m � �� We have

�G�P�Q�

�P
� O

�
�

jP �Qj

�
�����

From this we can obtain thatZ
S

�G�P�Q�

�P
u�Q�dS � C�S� ���
�

by an argument similar to that of Mikhlin���� pp� �	���� For m � �� one can use

an argument similar to that of G#unter���� p� ��� to show the result�

�

It is worth mentioning that using results from potential theory� it is likely that

u � Cm�S� implies something like Ku � Cm���S�� We do not need such a result� so

we do not investigate it further�

Theorem ����� Let m � � be an integer� Let �S be the boundary of a convex open



��

set !� and assume �S is a surface to which the Divergence Theorem can be applied�

Assume S is a smooth �possibly disconnected� unoccluded surface S 
 �S that can be

represented as in ���	
� with each parametrization function of ���	�� Fj � Cm���Rj��

Also� assume �� E � Cm�S�� Then

�a� The equation ������ is uniquely solvable for each E� with the solution u�P �

satisfying

kuk� � kEk�
�� kKk ����

�b� The solution u � Cm�S��

Proof� �a� Since ��P � is a continuous function� using Lemma �
�� it follows

that K � C�S� �� C�S� is a bounded compact operator with

kKk � k�k� �����

Then by the assumption ������ we have

kKk � � �����

Using the Geometric Series Theorem� we have that the operator I � K � C�S� ��
C�S� is invertible with ����I � K������ � �

�� kKk �����

Thus� the equation ���� is uniquely solvable for all emissivity functions E � C�S��

Formula ���� follows from ���� and ������

�b� For m � �� the result follows from part �a�� If m � �� write ���� in the

form

u � E �Ku
Use induction on m and Lemma �
�
 to show that u � Cm�S��

�

The majority of applications are likely to have surfaces S that are only piecewise



�


smooth� In this case� the function G�P�Q� has singular behavior along all edges and

corners� and as a consequence� the operator K is no longer as well	behaved as for

the smooth case� This case is discussed in Atkinson and Chandler��� Section ��� and

Atkinson and Chien��� Section � �

��� Superconvergent Collocation Methods

for the Radiosity Equation

A superconvergent piecewise linear collocation method for the radiosity equa	

tion was developed in Atkinson and Chandler���� Following the same ideas we will

investigate superconvergent methods based on interpolation of higher degree of the

solution of �����

As in Chapter II� consider S a surface satisfying ����� and ���
�� Letn b�j
n�k j k � �� ���� nj

o
�����

be a triangulation of Rj� which will yield a triangulationn
�j

n�k j k � �� ���� nj
o
� �j

n�k � Fj

� b�j
n�k

�
� k � �� ���� nj �����

of the subsurface Sj� Then for S as a whole� de�ne

Tn �
J�

j��

n
�j

n�k j k � �� ���� nj
o

�����

Let

h � hn � max
��j�J

max
��k�nj

diameter
� b�j

n�k

�
�����

be the mesh size of this triangulation� �The number of triangles n is to be understood

implicitly� from now on� we dispense with it��

As in Section �� and earlier in Section 
��� let � be a constant with � � � �

�


and de�ne the quadratic interpolation nodes in � � f�s� t� j � � s� t� s� t � �g�

fq�� ���� q�g as in �
����� De�ne corresponding Lagrange interpolation basis functions



�

l��s� t�� ���� l��s� t� as in �
����� For g � C�S�� de�ne the quadratic interpolating poly	

nomial

�Png� �mk�s� t�� �
�X

j��

g �mk�qj�� lj�s� t�� �s� t� � � �����

with the mapping mk � �
�����
onto

�j
k de�ned in �
��� and approximate

g�P � � �Png��P �� P � mk�s� t� � �k ���
�

which leads toZ
�k

g�Q�dSQ �
�X

j��

g �mk�qj��
Z
�

lj�s� t� j�Dsmk �Dtmk� �s� t�j d� ����

After a lengthy calculation� we have

kPnk �

����������������	

�


� if � � � �

��� �p


� � ���� ���

��� ��� � if
��� �p


� � �

�



�����

We de�ne a collocation method with ������ Substitute

un�P � �
�X

j��

un�vk�jlj��s� t�� P � mk�s� t� � �k� k � �� ���� n �����

into ����� with V � � for an unoccluded surface� Then determine the values

fun�vk�j�g by forcing the equation ���� to be true at the collocation nodes� i�e�
solve the linear system

un�vi� � ��P �

�

nX
k��

�X
j��

un�vk�j�
Z
�

G �vi� mk�s� t�� lj�s� t�

� j�Dsmk �Dtmk� �s� t�j d� � E�vi�� i � �� ���� �n �����

This can be written abstractly as

�I � PnK�un � PnE �����

Also� introduce the iterated collocation solution

�un � E �Kun �����

The collocation solution un and the iterated collocation solution �un are related by

formulas �
����� Also�

�I � KPn��un � E �����



��

The operator

KPn � C�S� �� C�S� �����

is a numerical integral operator based on product integration� Thus an error analysis

for ����� can be based on the general theory for such numerical integral operators

�e� g� see Atkinson��� Section ��
� �� We will give an error analysis based on standard

projection operator theory instead� We have

Theorem ����� Assume S is a smooth unoccluded surface in IR�� and assume S 
 �S�

with �S the type of surface required in Lemma ����
� Assume S satis�es ���	
� and

���	�� with each Fj � C	� Then for all su�ciently large n� say n � n�� the operators

I � PnK are invertible on C�S� and have uniformly bounded inverses� Moreover� for

the true solution u of ������ and the solution un of ������

ku� unk� �
����I � PnK���

��� k�u� Pnu�k� � n � n� �����

Furthermore� if the emissivity E � C��S�� then

ku� unk� � O�h��� n � n� ���
�

Proof� The proof follows the standard type of collocation error analysis� with

Pn considered as a projection operator from L��S� onto itself �see Section 
������

Using a standard continuity argument we can show that u � L��S� implies Ku �
C�S� and that K � L��S� �� C�S� is a compact operator� It follows then that

Pn� �� �� � � C�S� ����

Then by Lemma 
���� we have that

kPnK �Kk� �� �� as n �� � �����

which by Theorem 
���� proves our assertion� The bound ���
� follows from the fact

that we are using quadratic interpolation�

�



��

��� Two Superconvergent Piecewise Quadratic
Collocation Methods

The �rst superconvergent method based on quadratic interpolation that we want

to discuss is very simple� not requiring a special value for �� but using a symmetric

triangulation� First� recall that the interpolation formula

g�s� t� �
�X

j��

g�qi�lj�s� t� �����

has degree of precision 
 for any � � � �
�


� and so does the quadrature formulaZ

�

g�s� t�d� �
�X

j��

g�qi�
Z
�

lj�s� t�d� �����

However� extending formula ����� to an integration formula over U � ��� �� �
��� �� or R � � 	 ��� and considering � more nodes �the points symmetric to the nodes
about the point

�
�
�
� �
�

�
� and the origin� respectively�� then formula ����� has degree

of precision �

Let

L�g�x� y� �
�X

j��

g �m� �qi�� lj�s� t�� �x� y� � m� �s� t� �����

for g � C���� with m� � �
�����
onto

� of �
���� We have the following�

Lemma ����� Let �� and �� be planar right triangles that form a square R of length

h on a side� Let g � C	�R�� Let  � L��R� di�erentiable with �rst derivatives Dx �

Dy in L��R�� Then






Z
R

 �x� y��I � L� �g�x� y�d�







 � ch	

�Z
R

�j j� jD j�d�
�� �max

R

n
jD�gj� jD	gj

o
�����

with L�g�x� y� � L�ig�x� y�� where �x� y� � �i� i � �� 
�

Proof� Let p��x� y�� p��x� y� denote Taylor expansions around a suitable center�

of degree 
 and  of g over R� As before we have

kg � pik� � chi��kDi��gk�� i � 
�  �����



��

From ����� it follows that

kp� � p�k� � ch�
�
hkD	gk� � kD�gk�

�
�����

Also� there is a constant  � such that

k �  �k� � chkD k� �����

Let L�

� � I � L� � We can writeZ
R

 L�

�gd� �
Z
R

 L�

� �g � p��d�

�
Z
R

� �  ��L�

� �p� � p��d� ���
�

The reason why ���
� is true is because

L�

�p� � � ����

since formula ����� has degree of precision 
� Also� since formula ����� has degree

of precision � and  � is a constant we have thatZ
R

 �L�

�p�d� � � �����

Taking norms in ���
� and using the bounds in �����	������ we have






Z
R

 L�

�gd�







 � ch	kL�

�k �
Z
R

j jd� � chkL�

�k � ch� �
�
hkD	gk� � kD�gk�

�
�
Z
R

jD jd� �����

The term on the right of ����� is bounded by

ch	

�Z
R

�j j� jD j�d�
�� �max

R

n
jD�gj� jD	gj

o
which proves ������

�

If integrating over just one triangle� by a similar argument we can prove the following�

Lemma ����� Let � be a planar right triangle� and assume the two sides which form



��

the right angle have length h� Let g � C���� and  � L����� Then






Z
�

 �x� y��I � L� �g�x� y�d�







 � ch�

�Z
�

j jd�
�� �max

�

n
jD�gj

o
�����

As before� these results can be extended to general triangles� with c replaced by

c�r���� or c�r�R��� respectively�

Now� we want to apply these results to the individual subintegrals in

Ku�vi� �
��vi�

�

nX
k��

Z
�

G �vi� mk�s� t�� u �mk�s� t��

� j�Dsmk �Dtmt� �s� t�j d�� i � �� ���� �n �����

with

g�s� t� � u �mk�s� t�� j�Dsmk �Dtmt� �s� t�j

 �s� t� � G �vi� mk�s� t�� �����

For that we need some information about the derivatives of G�P�Q� as Q �� P � We

have the following result�

Theorem ����� Let i � � be an integer and let S be a smooth Ci�� surface� Then


Di
QG�P�Q�




 � c

jP �Qji � P �� Q �����

for the function G�P�Q� of ������� with c a generic constant independent of P and

Q�

Proof� The proof of this theorem is rather long and elaborate� and for this

reason we give it in a separate section� Section ��
�

�

Now� we can prove our superconvergence result�

Theorem ����� Assume the hypotheses of Theorem ����
� with each parametrization

function Fj � C��S�� Assume u � C	�S�� Assume the triangulation Tn of S satis�es

������ and that it is symmetric� For those integrals in ������ for which vi � �k�



��

assume that all such integrals are evaluated with an error of O�h	�� Then

max
��i��n

ju�vi�� un�vi�j � ch	 �����

Proof� As in the proof of Theorem ���� we will bound

max
��i��n

jK�I � Pn�u�vi��j
For a given node point vi� denote �

� the triangle containing it and denote

T �
n � Tn � f��g

By our assumption� the error in evaluating the integral of ����� over �� will be

O�h	��

Partition T �
n into parallelograms to the maximum extent possible� Denote by

T ���
n the set of all triangles making up such parallelograms and let T ���

n contain the

remaining triangles� Then

T �n � T ���
n 	 T ���

n

It is easy to show that the number of triangles in T ���
n is O�n� � O�h���� and the

number of triangles in T ���
n is O�

p
n� � O�h����

It can be shown that all but a �nite number of the triangles in T ���
n � bounded

independent of n� will be at a minimum distance from vi� That means that the

triangles in T ���
n are �far enough� from vi� so that the function G�vi� Q� is uniformly

bounded for Q being in a triangle in T ���
n �

First� consider the contribution to the error coming from the triangles in T ���
n �

By Lemma �� the error over each such triangle is O �h
kD
uk��� since the area of
each triangle is O�h�� and using our earlier observation� Having O�h��� such triangles

in T ���
n � the total error coming from triangles in T ���

n is O �h	kD
uk���
Next� consider the contribution to the error coming from triangles in T ���

n � By

Lemma ��
� the error will be of size O�h	� multiplied times the integral over each

such parallelogram of the maximum of the �rst derivatives of G�vi� Q� with respect



��

to Q� Combining these we will have a bound

ch	
Z

S���

�jGj� jDGj� dSQ �����

By Theorem ���� the quantity in ����� is bounded by

ch	
Z

S���

�
� �

�

jvi �Qj

�
dSQ ���
�

Using a local representation of the surface and then using polar coordinates�

the expression in ���
� is of order

ch	
�
h� � h

�
� ch	

Thus� the error arising from the triangles in T ���
n is O�h	��

Combining the errors arising from the integrals over ��� T ���
n � and T ���

n � we have the

bound ������

�

For collocation on piecewise smooth functions� see Atkinson and Chandler���

Section ��� Here� we only state without proof a convergence result for the collocation

method ������

Theorem ����� Assume S is a piecewise smooth unoccluded surface in IR�� and

assume S 
 �S� with �S the type of surface required by Lemma ����
� Assume the

surface S satis�es ���	
� and ���	�� with each Fj � C	� For the interpolation method

of ������� assume

kPnkkKk � � � �� n � n� ����

for some constant � and some n� � �� The norm kPnk is given in ����	� and a

bound for kKk is given in ����	� and ������� Then for su�ciently large n� say n �
n�� the operator I � PnK are invertible on X and have uniformly bounded inverses�

Moreover� for the true solution u of ������ and the solution un of �������

ku� unk� �
����I � PnK���

��� ku� Pnuk� � n � n� �����



��

Furthermore� if the emissivity E � C��S�� then

ku� unk� � O�h��� n � n� �����

Next we will develop another superconvergent collocation method based on

piecewise quadratic interpolation of the solution� This time� we will increase the

order of the quadrature formula� �rst� by �xing �� Recall the interpolation formula

�����

g�s� t� � �L�g��s� t� �
�X

j��

g�qj�lj�s� t�

of degree of precision 
 for any � � � �
�


� The formulaZ

�

g�s� t�d� �
Z
�

L�g�s� t�d� �����

also has degree of precision 
 for general �� However� for � � ��
�
� �����������
����

formula ����� has degree of precision �� since it is exact for ��� ��� and �
�
�� Extending

it over symmetric triangles� it has then degree of precision ��

With the same notation as before we now have the following

Lemma ����	 Let �� and �� be planar right triangles that form a square R of length

h on a side� Let g � C��R�� Let  � L��R� be three times di�erentiable with partial

derivatives of order 
� �� and � in L��R�� Assume � � ��� Then






Z
R

 �x� y��I � L� �g�x� y�d�







 � ch�

�Z
R

�X
i��

jDi jd�
�� � max

R
i��������

n
jDigj

o
�����

with L�g�x� y� � L�ig�x� y�� where �x� y� � �i� i � �� 
�

Proof� Consider Taylor polynomials pi�x� y� of degree i� for i � 
� ���� such

that

kg � pik� � chi��kDi��gk�� i � 
� ���� � �����

Then

kpk�� � pkk� � chk��
�
hkDk��gk� � kDk��gk�

�
for k � 
� � � �����

In addition� let  i�x� y� be polynomials of degree i over � satisfying

k �  ik� � chi��kDi�� k�� i � �� �� 
 ������



��

Write Z
R

 L�

�gd� �
Z
R

 L�

� �g � p
�d�

�
Z
R

� �  ��L�

� �p
 � p	�d�

�
Z
R

� �  ��L�

� �p	 � p��d�

�
Z
R

� �  ��L�

� �p� � p��d� ������

�
Z
R

� � �  ��L�

�p	d�

�
Z
R

� � �  ��L�

�p�d�

To see why ������ is true� multiply out the terms on the right� After a series

of cancellations� we getZ
R

 L�

�gd� �
Z
R

 �L�

�p
d� �
Z
R

 L�

�p�d� �
Z
R

 �L�

�p�d� ����
�

The last two terms in ����
� are � because formula ����� has degree of precision 
�

and the second integral in ����
� is � because  � is a constant and formula �����

has degree of precision ��

Next we will show that the last two integrals in ������ are �� We have

L� �� � �  ��p	� � L� �� � �  ��L�p	� �����

since �� � �  ��p	� and �� � �  ��L�p	� agree at the collocation node points

�j� j � �� ���� �
 as we can see in the following

�� � �  ��L�p	� ��j� � � � �  ����j��L�p	���j�

� � � �  ����j�p	��j� ������

� �� � �  ��p	� ��j�

Now� because the integration formula ����� has degree of precision � and



�


deg�� � �  ��L�p	� � � we haveZ
R

L�

� �� � �  ��L�p	� d� � �

i�e� Z
R

� � �  ��L�p	d� �
Z
R

L� �� � �  ��L�p	� d� ������

Next we can writeZ
R

� � �  ��L�

�p	d� �
Z
R

� � �  ��p	d� �
Z
R

� � �  ��L�p	d�

�
Z
R

� � �  ��p	d� �
Z
R

L� �� � �  ��L�p	� d�

�
Z
R

� � �  ��p	d� �
Z
R

L� �� � �  ��p	� d� ������

�
Z
R

L�

� �� � �  ��p	� d�

� �

where the second equality is true by ������� the third by ����� and the last one

holds because deg�� � �  ��p	� � ��

A similar argument leads to Z
R

� � �  ��L�

�p�d� � � ������

Now� take norms in ������ and use the bounds �����	������ to get ������

�

If the integration is done over a single triangle� then we have the following

estimate �the proof is similar to that just given��

Lemma ����
 Let � be a planar right triangle and assume the two sides which form

the right angle have length h� Assume � � ��� Let g � C
���� � L���� twice

di�erentiable with derivatives of order 
 and � in L����� Then






Z
�

 �x� y��I � L� �g�x� y�d�







 � ch


�Z
�

�X
i��

jDi jd�
�� � max

�
i��������

n
jDigj

o
������

where c denotes a generic constant�



�

As described before� the last two results can be generalized to arbitrary triangles

under the assumption ��
���

In this case� we have the following superconvergence result�

Theorem ����� Assume the hypotheses of Theorem ����
� with each Fj � C�� As�

sume u � C��S�� Assume the triangulation Tn of S satis�es ������ and that it is

symmetric� For those integrals in ������ for which vi � �k� assume that all such

integrals are evaluated with an error of O�h
�� Then

max
��i��n

ju�vi�� �un�vi�j � ch
 ������

Proof� We give bounds for

max
��i���n

jK�I � Pn�u�vi��j
With the previous notations we have that the contribution to the error coming from

the triangles in T ���
n is O �h
kD
uk��

The contribution to the error coming from triangles in T ���
n is

ch�
Z

S���

�X
j��

�

jvi �Qjj dSQ ������

Using a local representation of the surface and then using polar coordinates�

the expression in ������ is of order

ch�
�
h� � h � logh �

�

h

�
Combining the errors we have �������

�

Numerical Examples� As a smooth surface consider a �two	piece surface�� De�ne

S� � f�x� y� �� j � � x� y � �g

S
���
� �

n
�x� y� z� j � � x� y � �� z � 
� x�

o
������

and let S��� � S� 	 S�
����

We solve the radiosity equation ���� with the emissivity E�P � so chosen that



��

the true solution is

u�x� y� z� �
�q

x� � y� � �z � �����
����
�

The re�ectivity function ��P � � �� for the solvability function of �I � K�u � E� this

is okay� since kKk � � due to the surface not being closed� In Table 
� we give

ku� unk� � max
��i��n

ju�vi�� un�vi�j
for � � �� and � � ��
� The results for � � ��
 are consistent with a convergence

rate of O�h	� predicted by Theorem ���� The results for � � �� appear to agree

with a convergence rate of O�h
� predicted by Theorem ���� which illustrates the

superconvergence�

� � �� � � ��


n ku� unk� Ratio ku� unk� Ratio

� ���� E	� ���� E	

�� ���� E	� ���� ���� E	� ����

�� ��� E	� 
��� ���
 E	� �
��



�� ��� E	� 
��
 ���
 E	� �����

Table 
� Errors in solving radiosity equation on S���

As a simple piecewise smooth surface� we use the unit cube

S � ��� ��� ��� ��� ��� ��
The emissivity is chosen so that the true solution is

u�x� y� z� �
�q

�x� ���� � �y � ��� � �z � ��
�����

The re�ectivity function is � � ���� The results for ku� unk� are shown in Table �

The ratios approach � as n increases� which is consistent with a rate of convergence

of O�h�� as predicted by Theorem ���� For this case we did not take higher values



��

for n� because the system to be solved has order �n�

n ku� unk� Ratio

�
 ��� E	�

�� ���� E	� ����

��
 ��
� E	� ����

Table � Errors in solving radiosity equation on the unit cube

��
 The Proof of Theorem ���

We want to prove �����


Di
QG�P�Q�




 � c

jP �Qji � P �� Q

We have by ����

G�P�Q� �
cos �P cos �Q
jP �Qj�

Denote by

F P �P�Q� �
cos �P
jP �Qj

FQ�P�Q� �
cos �Q
jP �Qj ������

Then� we can write

G�P�Q� � F P �P�Q� � FQ�P�Q� ������

and we have

Dn
QG �

nX
k��

�
n

k

�
Dn�k

Q �F P ��P�Q� �Dk
Q�F

Q��P�Q� ������

�This derivative notation is explained in the proof of Lemma �
�
��

By �����

jcos �P j � jcos �Qj � cjP �Qj ������



��

which leads to

jF P j� jFQj � c ������

Claim� 


Di
QF

P



 � 


Di

QF
Q



 � c

jP �Qji ������

Proof of claim� Fix P � S� The proof of ������ is very delicate� We will use

both a local parametrization of the surface as well as formal reasoning� Assume the

surface S can be represented locally by

z � f�x� y� ���
��

with f � Ci��� We consider P to be the origin of a coordinate system and Q an

arbitrary point in S� Then we have

P � ��� �� ��

Q � �x� y� f�x� y��

nP � ��� �� �� ���
��

nQ � ��fx�x� y���fy�x� y�� ��
�Implicitly� we then also have that f��� �� � fx��� �� � fy��� �� � ��� We can write

cos �P �
�Q� P � � nP
jP �Qj � jnP j �

Q

jQj �N
P

cos �Q �
�Q� P � � nQ
jP �Qj � jnQj �

Q

jQj �N
Q ���

�

where we denoted by NP � nP and by NQ �
nQ

jnQj � Note that by ���
��� N
P is

independent of Q �and� hence� of x and y�� while NQ is a function of Q� i�e� of x and

y� The inequalities ������ can now be written




 Q

jQj� �N
P






 � c




 Q

jQj� �N
Q






 � c ���
�

Let�s proceed �rst with the derivative of F P � In what follows we will use the

notation gx� rather than
�g

�x
� for the derivative of a function g with respect to x� We



��

have

jP �Qj�F
P

�x
� jQj

�
Q

jQj� �N
P

�
x

� jQj
��Qx �NP

jQj� � 

�
Q �NP

�
�Q �Qx�

jQj	
�A ���
��

�
Qx �NP

jQj � 

�
Q �NP

�
�Q �Qx�

jQj�
For the �rst term on the right of ���
�� we have

Qx �NP

jQj �
��� �� fx� � ��� �� ��q
x� � y� � �f�x� y���

�
fxq

x� � y� � �f�x� y���
���
��

� O

� jxj� jyjp
x� � y�

�
which is bounded� The second term on the right of ���
�� can be rewritten as




�
Q

jQj� �N
P

��
Q

jQj �Qx

�
���
��

The �rst term in ���
�� is clearly bounded because of ���
�� For the second

term in of ���
��� note that by ���
��� Qx � ��� �� fx�� Then by our assumption on

the smoothness of f � jfxj is bounded� and hence� so is





 QjQj �Qx






�
We have just proved that






�F
P

�x






 � c

jP �Qj � An identical argument will lead

to the result






�F P

�y






 � c

jP �Qj � So we have that


DQF
P



 � c

jP �Qj ���
��

In a similar way we prove that the claim is also true for FQ� We have

jP �Qj�F
Q

�x
� jQj

�
Q

jQj� �N
Q

�
x

� jQj
�
Qx �NQ

jQj� �
Q �NQ

x

jQj�

� 


�
Q �NQ

�
�Q �Qx�

jQj	
�A ���
��



��

�
Qx �NQ

jQj �
Q �NQ

x

jQj � 

�
Q �NQ

�
�Q �Qx�

jQj�
The �rst term on the right of ���
�� is obviously �� The second term on the right of

���
�� is bounded because
Q

jQj is a unit vector �so bounded� and

NQ
x �

�

jnQj ��fxx��fyx� �� �
fxfxx � fyfyx

jnQj� �fx� fy����
and we assumed f � Ci��� The third term on the right of ���
�� can be rewritten

�similarly with ���
��� as




�
Q

jQj �Qx

��
Q

jQj� �N
Q

�
���
��

which is bounded by ���
� and by our earlier discussion following ���
���

The same argument �with x replacing y � proves that






�FQ

�y






 � c

jP �Qj and so


DQF
Q



 � c

jP �Qj �����

The computations for higher order derivatives get more complicated� but the

idea of the proof is the same� Use the inequalities ���
� and the fact that the norm

of a vector of the form
Q

jQj � A is bounded if the components of A involve f and$or

its derivatives �e�g�
Q

jQj �Qx�
Q

jQj �N
Q�

Q

jQj �N
Q
x � etc��

This concludes the proof of the claim�

For the derivatives of G we have


Di
QG




 jP �Qjn �
iX

k��

�
i

k

� 


Di�k
Q F P �P �Q�i�k




 


Dk
QF

Q�P �Q�k





� c

which proves ������

�

�� Generalized Superconvergent Collocation Methods
for the Radiosity Equation

Following the results given in Atkinson and Chandler��� and our previous work�

we want to develop superconvergent collocation methods based on interpolation of



��

higher degree� To better understand how that works� let us consider �rst the case of

cubic interpolation� Recall the interpolation formula

g�s� t� �
��X
j��

g�qj�lj�s� t� �����

for qj and lj de�ned in �
����� �
���� and �
�
��� Formula ����� has degree of

precision � and so does its associated quadrature formulaZ
�

g�s� t�d� �
frX
j��

g�qj�
Z
�

lj�s� t�d�� �s� t� � �� g � C��� ���
�

But for � � ��
�
� �������� formula ���
� has degree of precision � �it is also

exact for ����� Again� extending it to a formula over a square �formed by symmetric

triangles�� we obtain a quadrature formula of degree of precision �� Let

L�g�x� y� �
��X
j��

g�m� �qj��lj�s� t�� �x� y� � m� �s� t� ����

We have

Lemma ������ Let �� and �� be planar right triangles that form a square R of length

h on a side� Let g � C��R�� Let  � L��R� two times di�erentiable with derivatives

of order 
 and � in L��R�� Assume � � ��� Then






Z
R

 �x� y��I � L� �g�x� y�d�







 � ch�

�Z
R

�j j� jD j� jD� j�d�
�� � max

R
i������

n
jDigj

o
�����

with L�g�x� y� � L�ig�x� y�� where �x� y� � �i� i � �� 
�

Proof� Let pi�x� y� denote Taylor expansions around a suitable center� of

degree i� of g over � � for i � � ����� We have

kg � pik� � chi��kDi��gk�� i � � ���� � �����

It then follows that

kpk�� � pkk� � chk��
�
hkDk��gk� � kDk��gk�

�
for k � � � �����

Also� let  i�x� y� be polynomials of degree i over � satisfying

k �  ik� � chi��kDi�� k�� i � �� � �����



��

We can write Z
R

 L�

�gd� �
Z
R

 L�

� �g � p
�d�

�
Z
R

� �  ��L�

� �p
 � p	�d�

�
Z
R

� �  ��L�

� �p	 � p��d� �����

�
Z
R

� � �  ��L�

�p	d�

Formula ����� is true� because after multiplying out the terms on the right we obtainZ
R

 L�

�gd� �
Z
R

 �L�

�p
d� �
Z
R

 L�

�p�d� �
Z
R

 �L�

�p�d� �����

The last three terms in ����� are � because formulas ����� and ���
� have degrees

of precision  and �� respectively� The last integral in ����� is � and the proof is

identical to the one given in Lemma ����

Now� take norms in ����� and use the bounds �����	����� to get ������

�

For integration over single triangles� as expected� the bound will only be of order

O�h
��

Consider formula ����� with i � �� ���� ��n� The superconvergence result that

follows is

Theorem ������ Assume the hypotheses of Theorem ����
� with each Fj � C�� As�

sume u � C��S� and � � ��� Assume the triangulation Tn of S satis�es ������ and

that it is symmetric� For those integrals in ������ for which vi � �k� assume that all

such integrals are evaluated with an error of O�h��� Then

max
��i���n

ju�vi�� �un�vi�j � ch� log h ������

Proof� We give bounds for

max
��i���n

jK�I � Pn�u�vi��j



��

With the previous notations we have that the contribution to the error coming from

the triangles in T ���
n is O �h�kD
uk���

The contribution to the error coming from triangles in T ���
n is

ch�
Z

S���

�X
j��

�

jvi �Qjj dSQ ������

Using a local representation of the surface and then using polar coordinates�

the expression in ������ is of order

ch�
�
h� � h � logh

�
Combining the errors we have �������

�

Now we want to investigate superconvergent collocation methods based on in	

terpolation of any degree r� It is clear from our work so far �for quadratic and cubic

interpolation� that we have to distinguish two cases� where r is odd and where r is

even�

Interpolation of odd degree� We consider the collocation nodes and the interpo	

lation basis functions of �
��� and �
��� for some odd number r� The formula

g�s� t� �
frX
j��

g�qj�lj�s� t�� �s� t� � �� g � C��� ����
�

has degree of precision at least r for any � � � �
�


� Assume r is an odd number�

The formula Z
�

g�s� t�d� �
frX
j��

g�qj�
Z
�

lj�s� t�d�� g � C��� �����

also has degree of precision r� Suppose we can �nd a value � � �� �
�


� such that

for � � ��� formula ����� has degree of precision r � �� Then� as it happened in

the cubic case� if we extend it to a rectangle� it will have degree of precision r � 
�

We have the following result�

Lemma ������ Let �� and �� be planar right triangles that form a square R of length



�


h on a side� Let g � Cr���R�� Let  � L��R� two times di�erentiable with derivatives

of order 
 and � in L��R�� Assume � � ��� Then






Z
R

 �x� y��I � L� �g�x� y�d�







 � chr��

�Z
R

�j j� jD j� jD� j�d�
��� max

R
i�r���r���r��

n
jDigj

o
������

with L�g�x� y� � L�ig�x� y�� where �x� y� � �i� i � �� 
�

Proof� Let pi�x� y� denote Taylor expansions around a suitable center� of

degree i� of g over � � for i � r� r � �� r � 
� We have

kg � pik� � chi��kDi��gk�� i � r� r � �� r � 
 ������

Then

kpk�� � pkk� � chk��
�
hkDk��gk� � kDk��gk�

�
for k � r� r � � ������

In addition� let  i�x� y� polynomials of degree i over � satisfying

k �  ik� � chi��kDi�� k�� i � �� � ������

We can write Z
R

 L�

�gd� �
Z
�

 L�

� �g � pr���d�

�
Z
R

� �  ��L�

� �pr�� � pr���d�

�
Z
R

� �  ��L�

� �pr�� � pr�d� ������

�
Z
R

� � �  ��L�

�pr��d�

Formula ������ is true� because after multiplying out the terms on the right we obtainZ
R

 L�

�gd� �
Z
R

 �L�

�pr��d� �
Z
R

 L�

�prd� �
Z
�

 �L�

�prd� ������

The last three terms in ������ are � because formulas ����
� and ����� have degrees

of precision r and r � 
� respectively� The last integral in ������ is � since

L� �� � �  ��pr��� � L� �� � �  ��L�pr��� ������



�

and hence Z
R

� � �  ��L�

�pr��d� �
Z
R

L�

� �� � �  ��pr��� d� � �

�just as in the proof of Lemma ����� Taking bounds in ������ and using ������	

������ we obtain �������

�

If integrating over a single triangle� the bound is given by

Lemma ������ Let � be a planar right triangle and assume the two sides which

form the right angle have length h� Assume � � ��� Let g � Cr������ � L����

di�erentiable with �rst derivatives in L����� Then






Z
�

 �x� y��I � L� �g�x� y�d�







 � chr��

�Z
�

�j j� jD j�d�
�� �max

�

n
jDr��gj� jDr��gj

o
������

where c denotes a generic constant�

Similar results hold for arbitrary triangles�

Consider formula ����� with i � �� ���� nfr� Now we can address the question of

superconvergence�

Theorem ������ Assume the hypotheses of Theorem ����
� with each Fj � Cr���

Assume u � Cr���S�� Assume the triangulation Tn of S satis�es ������ and that it

is symmetric� For those integrals in ������ for which vi � �k� assume that all such

integrals are evaluated with an error of O�hr���� Assume � � ��� Then

max
��i�nfr

ju�vi�� �un�vi�j � chr�� logh ����
�

Proof� We bound

max
��i�nfr

jK�I � Pn�u�vi��j
using the previous lemmas� By Lemma ��� the contribution to the error coming

from the triangles in T ���
n will be O �hr��kDr��uk���

Using Lemma ���
 we have that the contribution to the error coming from



��

triangles in T ���
n is of order

chr��
Z

S���

�X
j��

�

jvi �Qjj dSQ �����

Using a local representation of the surface and then using polar coordinates�

the expression in ������ is of order

chr��
�
h� � h� log h

�
� O�hr�� logh�

Combining the errors arising from the integrals over ��� T ���
n � and T ���

n � we have

����
��

�

Interpolation of even degree� Consider the interpolation formula

g�s� t� �
frX
j��

g�qj�lj�s� t�� �s� t� � �� g � C��� ������

with r an even number� Then the quadrature formulaZ
�

g�s� t�d� �
frX
j��

g�qj�� g � C��� ������

has degree of precision at least r� Considered over a rectangle formed by two sym	

metric triangles� it has degree of precision r� �� since r is an even number� De�ning

a collocation method with ������� for the solution of the collocation equation and

the true solution of the radiosity equation� we have the error estimate

ku� unk � O
�
hr��

�
������

For the convergence at the collocation nodes we have

Lemma ������ Let �� and �� be planar right triangles that form a square R of length

h on a side� Let g � Cr���R�� Let  � L��R� di�erentiable with �rst order derivatives

in L��R�� Then






Z
R

 �x� y��I � L� �g�x� y�d�







 � chr��

�Z
�

�j j� jD j�d�
�� � max

R
i�r���r��

n
jDigj

o
������

with L�g�x� y� � L�ig�x� y�� where �x� y� � �i� i � �� 
�

Proof� As mentioned earlier� we can �nd polynomials pi�x� y� of degree i such



��

that

kg � pik� � chi��kDi��gk�� i � r� r � � ������

which implies

kpr�� � prk� � chr��
�
hkDr��gk� � kDr��gk�

�
������

We can also �nd a constant  � such that

k �  �k� � chi��kDi�� k� ������

Then we have the equalityZ
R

 L�

�gd� �
Z
R

 L�

� �g � pr���d�

�
Z
R

� �  ��L�

� �pr�� � pr�d� ������

since formula ������ has degree of precision r and formula ������ has degree of

precision r � ��

Using the previous estimates� we obtain �������

�

For integration over one triangle only� the term in h in ������ is only hr��� We

use these results to prove the following superconvergence result�

Theorem ������ Assume the hypotheses of Theorem ����
� with each Fj � Cr���

Assume u � Cr���S�� Assume the triangulation Tn of S satis�es ������ and that it

is symmetric� For those integrals in ������ for which vi � �k� assume that all such

integrals are evaluated with an error of O�hr���� Then

max
��i�nfr

ju�vi�� �un�vi�j � chr�� ����
�

Proof� Again we bound

max
��i�nfr

jK�I � Pn�u�vi��j
using the previous lemma� With the same notations as before� we have that the

contribution to the error coming from the triangles in T ���
n will be O �hr��kDr��uk���



��

The contribution to the error coming from triangles in T ���
n is of order

chr��
Z

S���

�X
j��

�

jvi �Qjj dSQ� �����

Using a local representation of the surface and then using polar coordinates� the

expression in ����� is

chr��
�
h� � h

�
� chr�� � O�hr���

Combining the errors arising from the integrals over ��� T ���
n � and T ���

n � we have

����
��

�

Note that this case corresponds to the �rst type of superconvergent piecewise

quadratic collocation method� that we described in Section ���� The second method

presented there is somehow �special�� meaning it is not always possible to develop

such a method� Notice that in that case we found a value for � that increased the

degree of precision with 
� and then � using symmetric triangles� Since when r is

even we can always improve the precision by considering symmetric triangulations� it

makes no sense to determine a value �� that would only increase the degree with �

�since the symmetry does that� anyway�� That�s why the approaches and the results

are di�erent for the two cases� r odd and r even� As for a generalization of the

second superconvergent piecewise quadratic method that we presented� there is not

much hope there� That would mean to increase the degree of precision with 
� i�e�

have the quadrature formula be exact for all the polynomials in �� and �� of the given

degree� That means that one variable� �� has to satisfy a number of equations� which

�especially if r is large� may not have a solution�

In fact� even increasing with � the degree of precision �what we assumed was

possible in order to have a superconvergent method� is sometimes di�cult� As an

easy example� consider the case r � �� To increase the degree of precision to �� the



��

corresponding quadrature formula must be exact for both ��� and �
�
� �



��

CHAPTER IV

A COLLOCATION METHOD FOR SOLVING

THE EXTERIOR NEUMANN PROBLEM

In this chapter we study the numerical solution of a boundary integral equation

reformulation of the exterior Neumann problem� We give an outline of the problem

and its solvability� Then� we propose a collocation method based on interpolation

and give an error analysis� Numerical examples for the piecewise constant collocation

method �centroid rule� conclude this chapter�

��� The Exterior Neumann Problem

Let D denote a bounded open simply	connected region in IR�� and let S denote

its boundary� Let D � D	S and denote by De � IR
��D the region complementary

to D� Let De � De 	 S� At a point P � S� let nP denote the unit normal directed

into D� provided that such a normal exists� In addition� we will assume that S is a

piecewise smooth surface satisfying ����� and ���
��

The Exterior Neumann Problem

Find u � C��De� � C��De� that satis�es

�u�P � � �� P � De

�u�P �

�nP
� f�P �� P � S �����

u�P � � O�P����
�u�P �

�r
� O�jP j��� � as r � jP j � � uniformly in

P

jP j
with f � C�S� a given boundary function�

The boundary value problem ����� has been studied extensively �see Mikhlin����

Ch� ���� G#unter���� Ch� �� Colton���� Section ����� Here we only give a very brief



��

look at results on the solvability of the problem ������

The Divergence Theorem �see Atkinson��� Theorem ����
�� can be used to obtain

a representation formula for functions that are harmonic inside the region De� Let

u � C��De� � C��De� and assume that �u�P � � � at all P � De� ThenZ
S

�u�Q�

�nQ

dS�Q�

jP �Qj �
Z
S

u�Q� � �

�nQ

�
�

jP �Qj

�
dSQ

�

������	
��� � !�P ��u�P � � P � S

��u�P � � P � De

���
�

�see Atkinson�
��� In formula ���
�� !�P � denotes the interior solid angle at P � S�

de�ned in Atkinson��� p� ���� If S is smooth� then !�P � � 
�� For a cube� the

corners have interior solid angle of
�



�� and the edges have interior solid angles of ��

To study the solvability of ������ consider representing its solution as a single

layer potential

u�A� �
Z
S

��Q�

jA�Qj dSQ� A � De ����

The function � in ���� is called a single layer density function� The function u�A� in

���� is harmonic for all A �� S� For well	behaved density functions and for A �� S� the

integrand in ���� is nonsingular� Even though for the case A � P � S� the integrand

in ���� becomes singular� it is relatively straightforward to show that the integral

exists and moreover� if � is bounded on S� then

sup
A�IR�

ju�A�j � ck�k� �����

For a complete description of the properties of the single layer potential� see G#unter����

Chapter 
��

Now for the function u of ����� impose the boundary condition from ����� to

get

lim
A�P
A�De

nP � r
�Z
S

��Q�

jA�Qj dSQ
�� � f�P �� P � S �����

for all P � S at which the normal nP exists �which implies !�P � � 
��� Using a



��

limiting argument� we obtain the second kind integral equation


���P � �
Z
S

��Q� � �

�nP

�
�

jP �Qj

�
dSQ � f�P �� P � S� �����

The set S� is to contain all points P � S at which a normal is de�ned� If S is a

smooth surface� then S� � S� otherwise� S � S� is a set of measure �� The kernel

function in ����� is given by

�

�nP

�
�

jP �Qj

�
�
nP � �P �Q�

jP �Qj� �
cos �P
jP �Qj� �����

where �P denotes the angle between nP and �P � Q�� Equation ����� can now be

written as

��P � �
�


�

Z
S

��P � � cos �P
jP �Qj� dSQ � �f�P �� P � S �����

where �f�P � �
�


�
f�P �� For simplicity� we will write f�P � instead of �f�P ��

Write the equation ����� in operator form�

�I � K�� � f �����

The properties of the integral operator K and� implicitly� the solvability of equation

����� have been studied intensively in the literature� especially for the case that S is

a smooth surface� For S su�ciently smooth� K is a compact operator from C�S� to

C�S� and from L��S� to L��S�� These results are contained in many textbooks� for

example see Kress���� Chapter ��� or Mikhlin���� Chapters �
 and ���� We will just

state the following solvability result�

Theorem ����� Let S be a C� surface� Then the equation �	�� has a unique solution

� � X for each given function f � X� with X � C�S� or X � L��S��

This theorem then leads to a solvability result for the Exterior Neumann Problem

�����

Theorem ����� Let S be a smooth surface with De a region to which the Divergence

Theorem can be applied� Assume the function f � C�S�� Then� the Neumann problem

�	�
� has a unique solution u � C��De��



��

For the case when S is only piecewise smooth� the properties of K and the solvability

of ����� are not yet fully understood� We will assume that Theorem ����� is true for

the piecewise smooth surfaces that we will consider in our work�

��� A Collocation Method

We want to study the numerical solution of ����� using a an integral equation

reformulation of ����� have been used before �see Atkinson and Chien��� or Atkinson���

Section ��
��� but with the collocation nodes on the boundary of each triangular

element� As mentioned in Chapter I� there are problems with de�ning the normal at

the collocation points which are common to more than one triangular face� especially

if the surface itself is approximated� This in turn means it is di�cult to evaluate the

kernel function in equation ������ For these reasons it makes sense to try collocation

methods that use only interior collocation node points� like the ones described in

Chapter II�

We will use the same framework that we used for the radiosity equation� Assume

the surface S satis�es ����� and ���
� and has a triangulation Tn � f�n�k j i � k � ng
with mesh size h� For g � C�S� de�ne an operator Pn by

Png�P � �
frX
j��

g �mk�qj�� lj�s� t�� �s� t� � �� P � mk�s� t� � �k ������

with qj and lj de�ned in �
��� and �
���� This interpolates g�P � over each triangular

element �k � S� with the interpolating function polynomial in the parameterization

variables s and t� Since Png is not continuous in general� we need to enlarge C�S�

to include the piecewise polynomial approximations Png� To do this� we consider the

equation ����� within the framework of the function space L��S� with the uniform

norm k�k�� as described in Section 
����� Then� Pn � L
��S� �� L��S� is a bounded

projection operator� with kPnk given by �
�
���



�


De�ne a collocation method with ������� Denote vk�j � mk�qi�� Substitute

�n�P � �
frX
j��

�n �vk�j� lj�s� t�

P � mk�s� t� � �k� k � �� ���� n ������

into ������ To determine the values f�n�vk�j�g� force the equation resulting from the

substitution to be true at the collocation nodes fv�� ���� vnfrg� This leads to the linear
system

�n�vi� � �


�

nX
k��

frX
j��

�n�vk�j�
Z
�

cos �vi
jvi �mk�s� t�j�

� j�Dsmk �Dtmk��s� t�j d� � f�vi�� i � �� ���� nfr ����
�

which we write abstractly as

�I � PnK��n � Pnf �����

which will be compared to ������ We have the following result�

Theorem ����� Let S be a C� surface that satis�es ���	
� and ���	�� with Fj �
Cr��� Then for all su�ciently large n� say n � n�� the operators I � PnK are

invertible on L��S� and have uniformly bounded inverses� For the solution � of �	��

and the solution �n of �	�
��

k�� �nk� �
����I � PnK���

��� � k�� Pn�k� � n � n� ������

Furthermore� if f � Cr���S�� then

k�� �nk� � O�hr���� n � n� ������

Proof� The result follows from the standard theory for projection methods �see� for

example� Atkinson��� pp� ��	�
��� Since S is smooth� it is known that K � L��S� ��
C�S� and is compact� We then have

k�I � Pn�Kk �� � as n ��� ������

From ������ we have the standard result that since �I�K��� exists� then �I � PnK���

exists and is uniformly bounded for su�ciently large n� say n � n��



�

Combining ����� and ����� we have ������� The bound ������ follows from

������ and from the fact that we are using interpolation of degree r�

�

As described for the radiosity equation� superconvergent methods can be de	

veloped� Next� we want to explore in more detail the collocation method based on

piecewise constant interpolation �the centroid method� and show that it is supercon	

vergent at the collocation points� De�ne the operator Pn by

Png�P � � g�Pk�� P � �k� k � �� ���� n ������

for g � C�S�� Then� Pn is a bounded operator on C�S� with kPnk � �� De�ne a

collocation method with ������� Substitute

�n�P � � �n�Pk�� P � mk�s� t� � �k� k � �� ���� n ������

into ������ To determine the values f�n�Pk�g� force the equation resulting from the

substitution to be true at the collocation nodes fPk j k � �� ���� ng� This leads to the
linear system

�n�Pi� �
�


�

nX
k��

�n�Pk� �
Z
�

cos �Pk
jPk �mk�s� t�j�

� j�Dsmk �Dtmk� �s� t�j d� � f�Pk�� i � �� ���� n ������

which can be rewritten abstractly as

�I � PnK� �n � Pnf ���
��

which will be compared to ������

By Theorem ��
��� for the true solution � of ����� and the solution �n of the

collocation equation ���
��� we have

k�� �nk� � O�h�� n � n� ���
��

For g � C���� consider the interpolation formula ������� which has degree of precision



��

�� Integrating it over �� we obtainZ
�

g�s� t� d� �
Z
�

L�g�s� t� d� �
�



g
�
�


�
�



�
���

�

which has degree of precision ��

For � 
 IR�� a planar triangle with vertices fv�� v�� v�g� de�ne the mapping m�

as in �
���� Then for a function g � C���� the function

L�g�x� y� � g
�
m�

�
�


�
�



��
� g�P�� ���
�

is a constant polynomial interpolating g at the node m�

�
�


�
�



�
� P� �the centroid of

��� We have the following�

Lemma ����� Let � be a planar right triangle and assume the two sides which form

the right angle have length h� Let g � C����� Let  � L���� be di�erentiable with the

�rst derivatives Dx � Dy � L����� Then






Z
�

 �x� y� �I � L� � g�x� y� d�







 � ch�

�Z
�

�j j� jD j� d�

�� �max
�

n
jDgj� jD�jg

o
���
��

Proof� The proof is very similar to the proof of Lemma ����� Let L�� � I � L� �

We can �nd polynomials p��x� y�� p��x� y� of degrees � and �� respectively� and a

constant  � such that

kg � p�k � chkD� k�� kg � p�k� � ch�kD�gk�� k �  �k� � chkD� k� ���
��

From the �rst two inequalities in ���
��� it follows that

kp� � p�k� � ch
�
hkD�gk� � kDgk�

�
���
��

We can write Z
�

 L��g �
Z
�

 L�� �g � p�� d� �
Z
�

� �  ��L��p� d� ���
��

Since formula ������ has degree of precision �� it follows that

L��p� � � ���
��

Also� by the fact that formula ���

� has degree of precision �� the term



��

Z
�

 �L��p� d� � � ���
��

Using ���
�� we can write

L��p� � L���p� � p�� �����

Taking bounds and using ���
��

kL��p�k� � ch
�
hkD�gk� � kDgk�

�
�����

Using ����� and the third inequality in ���
��� we obtain






Z
�

� �  ��L��p� d�






 � ch�

�Z
�

j j� jD j d�
�� �max

�

n
kDgk�� kD�gk�

o
���
�

For the �rst integral in ���
��� using ���
�� we have the bound






Z
�

 L�� �g � p�� d�







 � ch�

�Z
�

j j d�
�� � kD�gk� ����

Combining ���
�� and ����� we have ���
���

�

As in Section �� �following Lemma ������ this result can be extended to general

triangles� provided

sup
n

�
max

�n�k�Tn
r��n�k�

�
�� �����

where

r��� �
h���

h����
�����

with h��� and h���� denoting the diameter of � and the radius of the circle inscribed

in � � respectively�

Corollary ����� Let � be a planar triangle of diameter h� let g � C����� and let

 � L���� with both �rst derivatives in L����� Then






Z
�

 �x� y��I � L� �g�x� y�







 � c �r���� h�

�Z
�

�j j� jD j� d�

��
� max

�

n
kDgk�� kD�gk�

o
�����

where c �r���� is some multiple of r��� of �	�����



��

Since formula ���

� has degree of precision � �odd� over �� extending it to a

square would not improve the degree of precision� which means the same error bound

as in Lemma ��
�
 is true for a parallelogram formed by two symmetric triangles�

We want to apply the above results to the individual subintegrals in

Kg�Pi� �
�


�

nX
k��

Z
�

cos �Pk
jPk �mk�s� t�j�

� �mk�s� t��

� j�Dsmk �Dtmk� �s� t�j d� �����

with the role of g played by � �mk�s� t�� j�Dsmk �Dtmk� �s� t�j� and the role of  
played by

cos �Pk
jPk �mk�s� t�j�

� For the derivatives of this last function� we have

Theorem ����� Let i be an integer and S be a smooth Ci�� surface� Then






Di
Q

�
cos �P
jP �Qj�

�




 � c

jP �Qji�� � P �� Q �����

with c a generic constant independent of P and Q�

Proof� The proof uses

j cos �P j � cjP �Qj �����

and the same type of argument that was used to prove Theorem ����

�

For the error at the collocation node points� we have the following�

Theorem ����� Assume the hypotheses of Theorem 	���
� with each Fj � C�� As�

sume � � C�� Assume the triangulation Tn of S satis�es �	��	� and is symmetric�

For those integrals in �	���� for which Pi � �k� assume that all such integrals are

evaluated with an error of O�h��� Then

max
��i�n

j��Pi�� b�n�Pi�j � ch� logh ������

Proof� As in the proof of ���� we will bound

max
��i�n

jK�I � Pn�u�vi��j



��

For a given node point vi� denote �
� the triangle containing it and denote�

T �
n � Tn � f��g

By our assumption� the error in evaluating the integral of ����� over �� will be

O�h���

Partition T �
n into parallelograms to the maximum extent possible� Denote by

T ���
n the set of all triangles making up such parallelograms and let T ���

n contain the

remaining triangles� Then

T �
n � T ���

n 	 T ���
n �

It is easy to show that the number of triangles in T ���
n is O�n� � O�h���� and the

number of triangles in T ���
n is O�

p
n� � O�h����

It can be shown that all but a �nite number of the triangles in T ���
n � bounded

independent of n� will be at a minimum distance from vi� That means that the

triangles in T ���
n are �far enough� from vi� so that the function G�vi� Q� is uniformly

bounded for Q being in a triangle in T ���
n �where we denote by G�P�Q� �

cos �P
jP �Qj� ��

First� consider the contribution to the error coming from the triangles in T ���
n �

By Lemma ��
�
 the error over each such triangle is O �h�kD�gk��� since the area of
each triangle is O�h�� and using our earlier observation� Having O�h��� such triangles

in T ���
n � the total error coming from triangles in T ���

n is O �h�kD�gk���
Next� consider the contribution to the error coming from triangles in T ���

n � By

Lemma ��
�
� the error will be of size O�h�� multiplied times the integral over each

such parallelogram of the maximum of the �rst derivatives of G�vi� Q� with respect

to Q� Combining these we will have a bound

ch�
Z

S���

�jGj� jDGj� dSQ ������



��

By Theorem ��
��� the quantity in ������ is bounded by

ch�
Z

S���

�
�

jP �Qj �
�

jP �Qj�
�
dSQ ����
�

Using a local representation of the surface and then using polar coordinates�

the expression in ����
� is of order

ch� �h� logh�

Thus� the error arising from the triangles in T ���
n is O�h� log h�� Combining the error

arising from the integrals over ��� T ���
n � and T ���

n � we have �������

�

Numerical Examples� As a smooth surface consider the ellipsoid�
x

a

��
�
�
y

b

��
�
�
z

c

��
� � �����

with �a� b� c� � ��� �� �� �the surface E��� and �a� b� c� � �
� � �� �the surface E
�

We solve the equation ����� with the function f�P � so chosen that the true solution

is

u �
�p

x� � y� � z�
������

In Tables � and � we give

ju�P �� un�P �j ������

where P � Pij � �i

�
ap

�
bp

�
cp


�
� De�Ej� �the exterior of Ej�� where �� � ����

�� � 
� and �� � �� �points situated further and further away from the boundary

of the ellipsoid�� The results are consistent with a convergence rate of O�h� log h�

predicted by Theorem ��
�� which illustrates the superconvergence�

As a simple piecewise smooth surface� we use again the unit cube

S � ��� ��� ��� ��� ��� �� ������



��

P � P�� P � P�� P � P��

n ju�P �� un�P �j Ratio ju�P �� un�P �j Ratio ju�P �� un�P �j Ratio

� ���
 E	� ���� E	� ���
 E	�

�� ��
� E	
 ���� ���� E	
 ��� ��
� E	
 ���

�� ���� E	
 ���� ��
 E	 ��
� ��� E	 ���


�� 
��� E	 ���
 ���� E	 ���� ��� E	� ���

Table �� Errors in solving the Neumann Problem on E�

P � P�� P � P�� P � P��

n ju�P �� un�P �j Ratio ju�P �� un�P �j Ratio ju�P �� un�P �j Ratio

� 
��� E	� ���� E	� 
��� E	


�� ���� E	
 ���� 
��� E	
 ��� ���� E	 ���

�� ��
� E	
 ���� ���� E	 ���� ���� E	� ����


�� ��
 E	 ���
 ��
� E	 ��� 
��� E	� ���


Table �� Errors in solving the Neumann Problem on E


The function f is chosen so that the true solution is

u �
�q

�x� ����� � �y � ����� � �z � �����
������

In Table � we give the results for ju�P � � un�P �j for P � Pi � ��i� �i� �i� � De�S��

i � �� 
� � The ratios approach 
 as n increases� which is consistent with a rate

of convergence of O�h� as predicted by Theorem ��
�� �with r � ��� As shown in

the table� the further away from the boundary of S the point P is� the better the

approximation�

We conclude this chapter by noting that the ideas used in this section to study



��

P � P� P � P� P � P�

n ju�P �� un�P �j Ratio ju�P �� un�P �j Ratio ju�P �� un�P �j Ratio

�
 ���� E	� 
��
 E	� ��
 E	


�� ���� E	� 
��� ���� E	
 ��� ��� E	 �
���

��
 ���� E	� 
��
 ��� E	
 
��� ��� E	� ��

��� ���� E	
 ���� ���� E	
 
��� ���� E	� ���

Table �� Errors in solving the Neumann Problem on the unit cube

the numerical solution of the exterior Neumann problem ����� apply very well to

studying the numerical solutions of the interior Neumann problem and the �interior

or exterior� Dirichlet problem as well� For the interior Neumann problem �analogous

to ������ only with D instead of De�� an auxiliary condition on f�P � is needed for

solvability �namely�
Z

S
f�Q� dS � ��� Also� this problem does not have a unique

solution in the sense that two solutions di�er by a constant� and the integral equation

corresponding to ����� is no longer uniquely solvable�

The interior Dirichlet problem is de�ned as follows� Find u � C�D� � C��D�

that satis�es

�u�P � � �� P � D

u�P � � f�P �� P � S ������

with f � C�S� a given boundary function� The approach is similar to the one used

to solve ������ Represent the solution of ������ as a double layer potential

w�A� �
Z
S

%�Q�
�

�nQ

�
�

jA�Qj

�
dSQ� A � D ������

and determine the density function % by imposing the boundary condition in ������

%�P �� �


�

Z
S

%�Q� � cos �QjP �Qj dSQ � f�P �� P � S ������



��

See Atkinson��� Ch� ��� for details�

The equation ������ is similar to equation ������ But� the interest in solving

it using collocation methods with only interior collocation points is not so great in

this case� since the kernel does not involve the normal nP � but the normal nQ� The

exterior Dirichlet problem �de�ned analogously with ������� only with De instead of

D� can be transformed into an interior Dirichlet problem using a Kelvin transform

�see Atkinson��� pp� ���	��
���



�


CHAPTER V

CONCLUSIONS

This paper investigates collocationmethods for the solution of Fredholm integral

equations of the second kind

u�P ��
Z
S

u�Q�K�P�Q� dSQ � f�P �� P � S �����

In particular� we are interested in the radiosity equation

u�P �� ��P �


�

Z
S

u�Q�G�P�Q�V �P�Q� dSQ � E�P �� P � S ���
�

and in the integral equation reformulation of the exterior Neumann problem

��P � �
�


�

Z
S

��Q�
cos �P
jP �Qj� dSQ � f�P �� P � S ����

Collocation methods based on piecewise polynomial interpolation for the nu	

merical solution of ����� have been studied extensively� especially piecewise linear

methods �with the collocation nodes being the three vertices of each triangle� see

Atkinson��� Section �
�� and piecewise quadratic collocation methods �with the six

collocation node points being the vertices and midpoints of the sides of each trian	

gle� see Atkinson and Chien����� We considered �following the ideas in Atkinson and

Chandler���� only collocation methods for which the collocation nodes are interior

to each triangular face� We did so to avoid the di�cult task of evaluating the unit

normal to a surface that is not smooth at points located on an edge or at a corner�

Also� in choosing the collocation nodes this way� we cannot have collocation points

which are common to more that one triangle �in which case� again� there would be

problems in de�ning the normal at such points��

We described in Chapter II a procedure for obtaining a numerical method



�

of any desired order� Using interpolation of the solution of degree r at the fr �
�r � ���r � 
�



interior nodes de�ned in �
���� we obtain an error of order O�hr����

If we use symmetric triangulations or particular choices of the parameter � �used in

de�ning the collocation nodes �
����� we might improve the rate of convergence�

We want to have collocation node points that are interior to each triangle and

symmetrically placed inside each triangle� The set of nodes in �
��� is not the only

possible choice� We de�ned them that way because using that pattern it is possible

to de�ne interpolation of any degree r� But� in applications we rarely consider in	

terpolation of degree higher that 
� One other way of choosing � interpolation �and

collocation� nodes would be the following� Consider two constants � � �� � �
�



�

� �� � and de�ne

q� � ��� ��� q� � ��� �� 
��� q� � ��� 
�� ��

q	 � ��� ��� q
 � ��� �� 
��� q� � ��� 
�� �� �����

which is actually a generalization of the nodes for quadratic interpolation considered

in �
���� and �
���� �letting � �
�� �



� we obtain the nodes in �
���� and �
������ A

quadrature formula derived based on quadratic interpolation at the nodes ����� has

degree of precision 
 for any � � �� � �
�



� and degree of precision � for � � ��

�
�

������ and � � ��
�
� �����
��� Also� for these values� if the integration is done

over symmetric triangles� the degree of precision is ��

Another set of interpolation nodes for the quadratic case could be

q� � ��� ��� q� � ��� ��� q� � ��� ��� q	 � ��� ��� q
 � ��� ��� q� � ��� �� �����

for constants � � �� �� � �
�



� � � � � �� � � �� � � � � �� The de�nition of the

six basis functions l�� ���� l� and the computation of the norm kPnk of the correspond	
ing interpolation polynomial would be signi�cantly more di�cult� but having more

�degrees of freedom� in choosing values for �� � �and � in ������ may lead to higher



��

degrees of precision of the approximation� For the cubic interpolation case� one might

consider the set of nodes in ����� and

q� � ��� ��� q� � ��� �� 
��� q � ��� 
�� ��� q�� � ��

�
�


� �����

In Chapter III we used piecewise quadratic collocation methods for �nding the

numerical solution of the radiosity equation ���
�� Under certain smoothness assump	

tions the equation ���
� is uniquely solvable for each function E� We proved that in

this case� the rate of convergence is O�h��� At the collocation node points� we ob	

tained superconvergence� O�h	� when we used only a symmetric triangulation� and

O�h
� when in addition to the symmetry we considered a certain value for the pa	

rameter �� which increased the degree of precision of the quadrature formula derived

from the interpolation formula� The error analysis is based on the collocation solution

and it uses the space L��S�� requiring Pn to be a projection operator�

We also described procedures for obtaining superconvergent collocation methods

using interpolation of higher degree� For the case of cubic interpolation with a special

value for the parameter � we obtained a rate of convergence of O�h� log h�� To obtain

superconvergent methods based on interpolation of the solution of degree r� we must

consider separately the cases of r being an odd or an even number� If r is even � we can

obtain superconvergence� O�hr���� by simply considering symmetric triangulations of

the surface S� Superconvergent methods with r being odd are more di�cult to obtain�

since they require the existence of a number �� for which the quadrature formula has

degree of precision r��� The value of such an �� is determined by solving a system of

equations in only one variable� and that system may not have any solution� However�

if such an �� exists� then the rate of convergence of the collocation method is proven

to be O�hr�� log h�� For the numerical examples in Section � in implementing the

method� we used the boundary element package described in Atkinson���



��

We only considered the simplest of cases� that of unoccluded surfaces �V � ���

For computer graphics applications the more interesting case is that of occluded

surfaces� In this case there are problems along the �lines of discontinuity� of V in

dealing with the integrals over triangles �k where V �vi� Q� � � is not true for vi � �k�

In Atkinson and Chien��� the authors describe a way of solving this problem in the

case of piecewise constant interpolation� Unfortunately� for higher order methods this

approach is not good enough�

Also� the surfaces considered are smooth� However� in most applications� the

surfaces are likely to be only piecewise smooth� In this case the radiosity kernel is less

well	behaved than for the smooth case� being no longer compact� We do not obtain

superconvergence anymore� as the examples in Section � show�

Another factor that might slow down the speed of convergence is the approxi	

mation of the surface S� If the boundary S is curved rather than polyhedral� then it

is convenient to approximate S by interpolation� obtaining an approximate bound	

ary bS �see Atkinson and Chien��� or Atkinson��� Sections ���� and ���� �� The

interpolatory surface is then used in the approximate calculation of the Jacobian

j�Dsmk �Dtmk� s� t�j and the approximate calculation of the unit normals nP and

nQ� In the boundary element package Atkinson��� we use a quadratic interpolation

of a curved surface� The decrease in the rate of convergence due to interpolation of

the surface was not shown in our examples in Section �� since for both surfaces the

approximation was exact�

In Chapter IV we use a piecewise polynomial collocation method for the numer	

ical solution of equation ����� Equation ���� arises in solving the exterior Neumann



��

problem� Representing the solution of the Neumann problem as a single layer poten	

tial �which is always harmonic�

u�A� �
Z
S

��Q�

jA�Qj dSQ� A � De �����

the density function � must satisfy equation ����� Since the kernels of equations ���
�

and ���� are similar� the approaches used in �nding numerical solutions for ���
� ap	

ply very well to ����� Collocation methods with nodes interior to the triangles �and

surface� are especially useful for equation ���
�� since in evaluating the kernel at the

collocation points� there are problems with the normal nP at either points common

to more that one triangular face� or at points that are on a corner or edge of the

surface S� In Section ��
 we describe and give an error analysis for such colloca	

tion methods based on interpolation of the solution at the interior collocation nodes

�
���� Numerical examples are given for the case of piecewise constant interpolation

�the centroid rule� of the solution� The examples illustrate the superconvergence �

O�h� log h�� of the centroid rule in the case of a smooth surface �the ellipsoid�� For

the case of piecewise smooth surface �the unit cube�� the rate of convergence obtained

is only O�h�� the method being no longer superconvergent�

The ideas described in this chapter apply well to studying the numerical solu	

tions of the interior Neumann problem and the �interior or exterior� Dirichlet Prob	

lem as well� For the interior Neumann problem �analogous to the exterior Neumann

problem� only with D instead of De�� an auxiliary condition on f�P � is needed for

solvability �namely�
Z

S
f�Q� dS � ��� Also� this problem does not have a unique

solution in the sense that two solutions di�er by a constant�

In this work we studied in detail only the case of piecewise constant interpolation

of the solution for the Neumann problem� But� as we did in Chapter III for the

radiosity equation� superconvergent collocation methods based on interpolation of



��

higher degree can be developed for equation �����
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