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ABSTRACT

In this work, we present numerical methods for the solution of Fredholm integral
equations of the second type, for smooth and piecewise smooth surfaces. We use a
collocation method based on piecewise polynomial interpolation of the solution. We
consider only collocation methods for which the collocation nodes are interior to each
triangular face.

In Chapter II we give the general framework for collocation methods based on
interpolation. We show that interpolation of degree r of the solution leads to an error
in the collocation method of O(h™*!), where h is the mesh size of the triangulation,
and so collocation methods of any given order can be developed.

In Chapter III we discuss superconvergent methods, as particular cases of the
methods introduced in Chapter II. The radiosity equation is introduced, along with
some of its properties. Next we discuss two superconvergent collocation methods
based on piecewise quadratic interpolation, for the radiosity equation, followed by
numerical examples. We conclude this chapter with giving generalized superconver-
gent methods based on interpolation of any degree r, considering separately the case
where r is odd and the case where r is even.

In the following chapter the ideas described earlier are used for finding numerical
solutions of the exterior Neumann problem, since in solving this problem we encounter
integral equations whose properties are very similar to the ones of the radiosity equa-
tion. Considering collocation methods that use only interior nodes is especially useful

in solving this problem. We describe a collocation method based on interpolation of



the solution, for solving the integral equation derived from the exterior Neumann
problem, giving numerical examples for the case of piecewise constant interpolation
of the solution (centroid rule).

In the concluding chapter, we draw some important and interesting conclusions

as well as discuss some possible ideas for future work in this area.
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CHAPTER I
INTRODUCTION

Integral equations are an important subject within applied mathematics. They
are used as mathematical models for many and diverse physical situations. Also,
integral equations occur as reformulations of other mathematical problems, such as
Laplace’s equation.

In this work, numerical methods are presented and analyzed for the solution of

Fredholm integral equations of the second kind of the form

u(P) — [w(@K(P,Q)dSq = f(P), PeS (11)
s
for a smooth or piecewise smooth surface S. In operator form

Z-Ku=Ff (1.2)
We investigate a certain type of collocation method based on piecewise poly-
nomial interpolation of the solution. The general idea of the numerical method is
the following: Begin by triangulating S and then approximate the unknown function
u(P) by functions which are piecewise polynomial in a parametrization over the tri-
angulation of S. Then the numerical solution is found by collocation, meaning that
the approximate form of the solution is substituted into the equation and then the
equation is forced to be true at the collocation node points, leading to a system of
linear equations for determining the approximate solution.
When the surface S is smooth and the operator K is compact on C(S5), it is
relatively easy to do an error analysis of collocation. However, in most applications

the surface will only be piecewise smooth, and in this case the analysis of collocation



is often more difficult. Also, a lack of smoothness of the kernel function K (P, Q) may
imply that IC is no longer compact, nor that any power of it is compact.

Another difficulty in the case where S is not smooth arises in the evaluation of
the unit normal to the surface at points located on an edge or at a corner of S. Also,
there is a problem in defining the normal at the collocation points which are common
to more than one triangular face Ay, even for smooth surfaces. To avoid all these
problems, we consider only collocation methods for which the collocation points are
interior to each triangular face. This also greatly simplifies the programming.

For some approximations of the solution, the function space needs to be changed,
namely C'(S) must be enlarged to include piecewise polynomial approximants. One
way of doing this is by using the space L*(S), the set of all essentially bounded and
Lebesgue measurable functions on S, with the essential supremum norm || - || .

A general framework and error analysis of these methods is given in Chapter II.
We recall the basic results in interpolation and collocation theory, which we need to
show that interpolation approximations of degree r of the solution lead to an error
in the collocation method of O(h™*'), where h is the mesh size of the triangulation.
In certain cases, which are described in detail, the error can be improved. In the last
part of this chapter, we give a procedure for producing a collocation method for the
equation (1.1) of any desired order.

In Chapter III within the framework described in Chapter II, we investigate
special collocation methods, arising from certain choices of the node points and certain
types of triangulation, which lead to superconvergence for some collocation solutions
u, at the collocation nodes. In the second part of this chapter, we describe such
methods for the radiosity equation. Radiosity is a method of describing illumination

based on a detailed analysis of light reflections off diffuse surfaces. It is typically



used to render images of the interior of buildings, and it can achieve extremely photo-
realistic results for scenes that are comprised of diffuse reflecting surfaces. In computer
graphics, the computation of lighting can be done via radiosity. The radiosity equation
u(P) ~ @ [wl@GP,QV(P,Q)dSq = E(P), Pes (1.3)
and some of its properties aie discussed in more detail in Section 3.2. An introduction
to the use of equation (1.3) in computer graphics is given in Cohen and Wallace[9)],
along with methods for its numerical solution. In the past, the Galerkin method has
been primarily used to obtain a numerical solution of this equation, with piecewise
constant functions as the approximations. In Atkinson and Chandler[5] and Atkinson
and Chien[7], the authors investigate different collocation methods for this equation,
using piecewise constant (in Atkinson and Chien[7]) or piecewise linear (in Atkinson
and Chandler[5]) functions. The methods described in Section 3.3 are obtained using
the same approach, with collocation based on piecewise quadratic interpolation of
the solution. Numerical examples are given for these cases. In the last part of
this chapter, we discuss procedures for developing superconvergent methods for the
radiosity equation, based on interpolation of any degree r of the solution. Two cases
must be differentiated: the case where r is an odd number and the case where r is an
even number. The approaches and the results in the error estimates are different for
the two cases.
In the next chapter the ideas described earlier are used for finding numerical
solutions of boundary integral equation reformulations of Laplace’s equation
Au=0 (1.4)
on regions in IR®. In particular, the exterior Neumann problem is studied from this
perspective. This is of interest because, in solving the interior and exterior Neumann

problems using a single layer potential, we are faced with the problem of evaluating



the kernel function for field points that are on the edges of the triangular faces, where
this kernel is bad behaved at such points. Considering interior collocation nodes solves
this problem. The ideas described in this chapter apply very well to the (interior or
exterior) Dirichlet problem also, but because of the existing theory for this problem,
it is not of such great interest for this case.

In the concluding chapter, we draw some important and interesting conclusions

as well as discuss some ideas for future work in this area.



CHAPTER II
PRELIMINARIES FOR COLLOCATION METHODS

2.1 Preliminaries
Consider the Fredholm integral equation of the second kind

u(P)~ [ u(QK(P,Q)dS = f(P), PeS (2.1)
with S a bounded set in IR. SThe kernel function K (P, Q) is assumed to be absolutely
integrable, and it is assumed to satisfy other properties which are sufficient to imply
the “Fredholm Alternative Theorem” (see Atkinson[4, Theorem 1.3.1]). The problem
to be solved is: Given K and f, find the function v satisfying equation (2.1). Other
properties that v may need to satisfy are problem and method dependent.

In this chapter we describe the general framework for collocation methods based
on piecewise polynomial interpolation of the solution. We consider a certain type of
collocation method. Error formulas and rates of convergence are given. In the end
we describe a procedure for developing a collocation method of any desired order.

2.1.1 Interpolation Over the Unit Simplex

We begin by giving some background material needed later. These are well-
known results and can be found in more detail in Atkinson[4]. Let o denote the unit
simplex, o = {(s,t) | 0 < s,t,s +t < 1}. Introduce u = 1 — s — t. The coordinates
(s,t,u) are called barycentric coordinates of a point.

Let g(s,t) be a continuous function on o. We will approximate g by a polynomial



interpolant p(s,t) of degree r, for some r > 0.

pr(s,t) = > ciys't! (2.2)

0,70
i+j<r

Since p, has f, = (r+1)(r+2)/2 degrees of freedom, we will determine the coefficients
¢;,j from f, interpolation conditions, namely

prlar) = g(a), k=1..% (2.3)
where the f, interpolation nodes will be chosen in the following way.

1
Let a be a given constant with 0 < a < 3 Define the interpolation nodes by

(it (r=3ia j+(r=3ja
%,) r Y r

>, 1,j >0, 14+75<r (2.4)
These f. nodes form a uniform grid over o (see Figure 1). If & = 0, some of these
points are on the edges of o . If @ > 0, then they are symmetrically placed points in
the interior of 0. For reasons described in Chapter I, throughout this paper we want
to consider only nodes that are interior to the triangular elements, so we will work

1
With0<a§§.

Figure 1: Unit simplex and the interpolation nodes

Denote by [; (s, t) the corresponding Lagrange interpolation basis functions.

Then for a given g € C'(0), the formula

pe(s,t) = > 9(aig)lis(s,1) (2.5)

0<itj<r



is the unique polynomial of degree r that interpolates g(s,t) at the nodes

{gij14,5>0, i+j<r}
The basis polynomials [; ;(s,t) of degree r are obtained, as usual, from the
conditions
lij(gij) = 1
Lij(ge) = 0, forl#iork#j

So, now we have the interpolation formula

g(s;t) = > glai;)li;(s,1) (2.6)
i+j<r
Integrating (2.6) over o, we obtain the quadrature formula

[o(stido~ ¥ wisglass) 2.7

g 0<i+j<r

where w; ; = / li j(s,t)do. Since the formula (2.6) is exact for all polynomials of
degree < r, formula (2.7) has degree of precision at least r.

To get a better idea of how to obtain the interpolation nodes and the corre-
sponding interpolation polynomials, we construct them explicitly for the cases r =
0, 1, 2, and 3. We use a sequential ordering of the nodes {qi,...,qs } to simplify
the notation and to lead to formulas more readily adaptable to implementation in
computer languages such as Fortran.

Example: Constant Interpolation

In this case, r = 0, f, = 1. A function g € C(0) is approximated by its value
at the unique interpolation node ¢, = (o, @).

The corresponding basis function is [;(s,t) = 1. We obtain the constant inter-
polation polynomial

po(s,t) = g(q1) (2.8)

Formula (2.6) becomes

9(s:1) = g(q) (2.9)



Integrating (2.9) over o yields

1
/g(s,t)da ~ §g(a, @)

(2.10)

which has degree of precision 0 for any a # 3 and degree of precision 1 for a = 3

A very common choice for the case of constant interpolation is o = 3 meaning

q1 is the centroid of o. In this case formula (2.10) has degree of precision 1. Later

in this paper we will discuss the collocation method based on this type of constant

interpolation, called the centroid rule.

Example: Linear Interpolation

Now r = 1 and there are f, = 3 nodes, denoted {q1, ¢2, g3} (shown in Figure 2), where

q1 = (Oé, Oé), q2 = (Oé, 1- 20(), q3 = (1 - 20&, Oé)

g2
* *
ql a3

Figure 2: Unit simplex and linear interpolation nodes

The corresponding Lagrange interpolation basis functions are
uU—a t—« 55—«

his:t) = T30 RO =15, bl =75

with u =1 — s — ¢. The approximation

9(57t) ~ ;Q(Qi)li(57t) = p1(57t)

(2.11)

(2.12)

(2.13)



gives the associated interpolation formula. It leads to the quadrature formula

[ a(s.t)do ~ é (s a) + gl 1 —20) + g(1 — 20,0)], 0<a< % (2.14)
This case is discussed in more detail in Atkinson and Chandler[5].
Example: Quadratic Interpolation

There are 6 nodes now in the earlier grid, and we denote them by {¢i, ..., ¢s}, using
(2.11) and

11—« l—-a l—« 11—«
qs = (Oé, 9 >7 Q5:< 5 9 >7 QG:< 9 ,Oé) (215)

(shown in Figure 3)

02

* *

a4 a5

* * *

Figure 3: Unit simplex and quadratic interpolation nodes

Introduce the basis functions

his.t) = 1u—_30;< 1u—_30(; )

h(s,t) = 1t—_?fya< 1—3a )

ls(s,1) = 18—_30;< 18—_30; )

li(s,t) = 41t__3o‘af__30; (2.16)
b(s,1) = 18—_30;1t—_;a

o(s.1) = y 5o u—a

1—-3al1—-3«x
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The approximation of g € C'(0) is given by

oo 1) % X glal(o. 1) 217
which after integration yields -
/g(s, t)do % [g(a, ) + g(a, 1 —2a) + g(1 — 2a, )]
(1—2a)(1l —6a) l -« l-a l-a
6(1 — 30)2 [g (O" T) 9 ( 5 2 > (2.18)

+ a(50a)]
g 5 y &
This formula has degree of precision 2 for any 0 < o < 3"

Example: Cubic Interpolation

In this case the 10 nodes, denoted {qi,...,qio} are the first 3 nodes given in

(2:3) (25-0) w=(35-)
= (a,= =(a,-—« =(-,z —«
g4 73 qs 73 de 373

2 1 2 1
qr = (g - Q, g) 4s = <§ -, CY) qy = (5704) (2.19)

These are shown in Figure 4.

(2.11) and

*

g2

* *

g5 96

* * *
g4 910 g7

* * * %
gL a9 a8 a3

Figure 4: Unit simplex and cubic interpolation nodes
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Define the basis functions
lu—« U — Q U — Q

his,t) = 51_3a(31—3a_1)(31—3a_2)
o = M el
ls(s,t) = %18__30;(318—_30; B 1)(318—_30; -2
la(s,t) = gf__go; lt__;a(?’f__gz -1
Is(s,t) = glu__;; 1t__;a(31t—_;a -1
L(s.1) = gls_—go; 1t_—3aa(3 1t_—?f¥a —1) (2.20)
lr(s,t) = 218:30; 175_—30;(3 18—_30; -1
ls(s,t) = glu__gc; 18__32(318—_32 -1
ly(s, 1) = glu_—;; 13_—32(31“__30; -1
ho(s,t) = 27;__32 1t__;a 18—_32
The polynomial
(o) Zg ) (2.21)

is the unique cubic polynomial that 1nterpolates g(s, t) at the nodes {q, ..., q10}-
The interpolation formula (2.6) becomes
10
t)~ > g(q:)li(s,t) (2.22)
i=1

Integrating (2.22) over o, we obtain

/g(s,t)da ~ m[ gla,a) + gla,1 —2a) + g(1 — 2a, a)]
* gaasap [ (00g) va (w5 =) va(5-ag)

2 1
+ g( ~a,a) +9(5.0)] (2.23)
—60a® + 60a? — 150+ 1) (l 1)
40(1 — 3«)? 33
which has degree of precision 3.

_|_
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2.1.2 Interpolation Error Formulas Over Triangles

We are extending now the procedures described in the previous section to in-
terpolation over a polygonal region R in the plane IR?.

Let 7, = {A4,...,A,} denote a triangulation of R. For now, we assume that
triangles A; and Ay can intersect only at vertices or along all of a common edge.
Later we will assume additional properties for the triangulation.

Let the vertices of Ay, be denoted by {vi 4, vok, vsk}, vjk = (%jk, yjk), and the
vertices of o by {21, 29, 23}, where

21 =(0,0), 25 =1(0,1), 23 =1(1,0) (2.24)
Define T}, : o =1 Ay by
onto

(z,y) =Tk(s,t) = uvrp +tvoy + sv3g, u=1—s5—1t, vji="T(2) (2.25)
This type of mapping is an affine mapping. The inverse of Ty, denoted by (s,t) =
Qr(x,y), is also an affine mapping. It is straight forward to prove that if p(z,y)
is a polynomial of degree r in (z,y), then P(s,t) = p(Ty(s,t)) is a polynomial of
degree r in (s,t). Conversely, if P(s,t) is a polynomial of degree r in (s,t), then
p(z,y) = P(Qk(z,y)) is a polynomial of degree r in (x,y).

So, having defined interpolation over o, we can now use the affine mapping
Tk (s,t) to define a corresponding interpolation polynomial over Ay, and by extension,
over R, similar to formula (2.5) for the unit simplex for ¢; defined in (2.4).

For a given g € C(R), define P,g by

Prg(Ti(s, 1)) = ig(Tk(Qi))li(Sat)v (s,t) €0, k=1,...n (2.26)
The operator norm of P, aslzlmapping from C'(R) to L*(R), is given by

fr
IPall = max 3 [1;(s, )] (2.27)
7j=1

)
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In the case o = 0, the formula (2.27) defines a projection operator on C(R) and

1, for linear interpolation
IPall =1 5 (2.28)
—, for quadratic interpolation

See Atkinson[4, p. 164]. ’

For 0 < a < %, the function FP,g¢ is usually not continuous over R, but it
can be regarded as a bounded projection on the larger space L>®(R), the set of all
essentially bounded and Lebesgue measurable functions on R, with the norm the

essential supremum || - ||o. See Atkinson, Graham and Sloan [8] for details on how to

extend P, from C'(R) to L*(R). For this case of «

14+«
| = 2.29
1Pl = T (2.29)
for linear interpolation, and
5 15 —8vV/3
Z if e e
3 ,f0<a< 3
[Pnll = (2.30)
1+ 10a — 7a? ,f15—8\/§< <1
1 (6 -
[ (1—32)2 33 3

for quadratic interpolation.

The following lemmas give error bounds for the approximation of a function by
and interpolatory polynomial. We omit the proofs, as they are relatively straightfor-
ward.

Lemma 2.1.1 Let T, be a triangulation of the polygonal region R. Let g € C(R),
let 1 > 0 be an integer, and let P,g be defined by (2.26). Then

19 = Prglloc < [|Pnllw(6n, 9) (2.31)
with w(0, g) the modulus of continuity of g

w(d,9) = sup lg(v) — g(w)]
0wl <

and o, the mesh size of the triangulation of R

0, = max diameter(Ay)
1<k<n
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Lemma 2.1.2 Let A be a planar triangle, let v > 0 be an integer, and assume

g € C"™(A). Then, for the interpolation polynomial Png(x,y) of (2.26)

max |g(2,y) — Pug(z,y)] < 6™ max max O g(&:m) (2.32)
@ojea WY IR T 0 emea | 0gionp |

with 6 = diameter(A). The constant ¢ depends on r, but it is independent of both g
and A.

See Atkinson[4, p. 158] for the proofs.

2.1.3 Interpolation and Numerical Integration
on Surfaces

Recall the integral equation (2.1) that we want to solve

u(P) — [w(@K(P,Q)dSq = f(P), PeS
or, in operator form i

Z-Ku=f (2.33)
where
Ku = / w(Q)K (P, Q)dSq (2.34)
Before proceeding we need sorile results on compact operators, which will be
needed in studying the solvability of equation (2.1). These results are described in
detail in Atkinson[4, Chapter 5], and only the most pertinent points are summarized
here.
Definition 2.1 Let X and Y be normed vector spaces, and let £ : X — Y be
linear. Then K is compact if the set {Kz | ||z||x < 1} has compact closure in Y.
Compact operators are also called completely continuous operators.
Lemma 2.1.3 Let X and Y be normed linear spaces with Y complete. Let IC €
LIX,)Y], let {I,} be a sequence of compact operators in L[X,Y], and assume IC,, —
Kin LIX,Y], i. e. |K,—K| — 0. Then K is compact.

We assume S is a connected piecewise smooth surface in IR®. By this, we mean
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S can be written as
S=5USU..US; (2.35)
with each S; the continuous image of a polygonal region in the plane
Fy:Ry—8;, j=1,.,] (2.36)
Generally, we will need to assume that the mappings F; are several times continuously
differentiable.

To create triangulations for .S, we first triangulate each R; and then map this
triangulation onto S;. Let {Afm | k =1,...,n;} be a triangulation of R;, and then
define
This yields a triangulation of S, which we refer to collectively as 7, = {Aq, ..., A, }.

We make the following assumptions concerning this triangulation:

T1. The set of all vertices of the surface S is a subset of the set of all vertices of the

triangulation 7,.

T2. The union of all edges of S is contained in the union of all edges of all triangles

in 7,,.

T3. If two triangles in 7, have a nonempty intersection, then that intersection con-

sists either of (i) a single common vertex, or (ii) all of a common edge.

We call triangulations satisfying T1 - T3 conforming triangulations.
Let Ay, be some element from 7,,, and let it correspond to some Ay, say Ay C R;
and Ay, = F](Ak) Let {01, U2, U 3 } denote the vertices of A,. Define my, : o 1—;1> Ay
onto

by

mg(s,t) = Fj(uty,1 + tOxo + SUk3), (s,t) €0, u=1—s—1 (2.37)
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Now we can define interpolation and numerical integration over a triangular surface
element A by means of a similar formula over o. Recall the uniform grid over o
defined in (2.4), which we refer to collectively as {q, ..., ¢, }. For g € C(S), restrict g
to some A € T, and define

(Pug)(mi(s, 1)) = ﬁ: 9(mi(q:))li(s, 1) (2.38)
This will define an interpolation formula ()Z:elr the surface S. The error bounds given
in Lemma 2.1.1 and Lemma 2.1.2 can be easily extended to similar results for surfaces.
See Atkinson[4, Section 5.3].

Next, we briefly describe the general framework for the collocation and iterated
collocation methods. Let X be a Banach space, let {X,, | m > 1} be a sequence of
finite dimensional subspaces. Let P,, : X — X,,, be a linear operator with

Pou=u, uecX, (2.39)
In attempting to solve the problem (2.33), we will approximate it by solving
Pi(L — Ky, = P fy um € X (2.40)
This is the form in which the method is implemented as it leads directly to equivalent
finite linear systems. To make an error analysis, we rewrite (2.40) in the equivalent
form
(Z —PnK)tupm =Pnf, umeX (2.41)
where u,, is the solution of (2.40). This is equivalent to (2.40), since Pty = Uy,
We have the following result:
Theorem 2.1.4 Let X be a Banach space, K : X — X a bounded operator with
T-K: XﬁX. Assume that
IK = PnK|| — 0 as m — oo (2.42)

Then for all sufficiently large m, say m > N, the operator (Z — P,,K)™" exists as a
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bounded operator from X to X. Moreover, it is uniformly bounded

sup |[(Z — P, K) | < o0 (2.43)
m>N
For the solutions of (2.33) and (2.41)
U= Uy = (T — Ppk) " (u— Ppu) (2.44)
1
— _lu—=Pull <llu—ull <II(Z =P, llu—-Pu 2.45
”I_meml <1l < 1I( ) -l I (249)

This leads to ||u — uy,|| converging to zero at exactly the same speed as ||u — Ppul|.
To apply the above theorem, we need to know whether || — P, K| — 0 as
m — 00. The following lemma addresses this question.
Lemma 2.1.5 Let X be a Banach space, and let {P,,} be a family of bounded pro-
jections on X with
Ppu — v as m — oo, u € X (2.46)
Let K : X — X be compact. Then
IK —PnK|| — 0 as m — o0 (2.47)
The proofs of Theorem 2.1.4 and Lemma 2.1.5 are fairly easy and they can be
found in Atkinson[4, Section 3.1]. The last lemma includes most cases of interest, but
not all. For some approximation processes, P,,u — u for most u € X, but not all u.
In such a case it is necessary to show directly that || — P, K| — 0. Since u,, — u
if and only if P,,u — u, such methods are not convergent for some solutions u.
For the iterated collocation method, consider the iteration
u ) = f 4 Ku®, kE=0,1,... (2.48)
If u,, is the solution of the collocation equation (2.41), define the iterated collocation
solution by
U, = [+ Kup, (2.49)
Then

Ptim = P f + PmKtiy, = tup, (2.50)
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and
(Z—KPp)im = f (2.51)
Combining (2.41) and (2.51), we obtain
U — Uy, = [f + Ku] = [f + Kup| = K(u — up) (2.52)
[t = G| < (K[ - e = v (2.53)
which proves that the convergence of ,, to u is at least as rapid as that of u,, to u.
Also, we see that (Z — P,,K) ! exists if and only if (Z — KP,,) ! exists, since
(Z—-KPm) ™' = I+KZ~-PuK) P
(Z-PnK)?t = IT+PnZ-KP,) 'K (2.54)
We can choose to show the existence of either (Z — P,,K) ! or (Z — KP,,) !, whichever
is the more convenient, and the existence of the other inverse will follow immediately.

Bounds on one inverse in terms of the other can also be given using (2.54).

2.1.4 Collocation as a Projection Method in L>(S)

We want to solve the equation (2.33), using a collocation method based on a
piecewise polynomial interpolation operator (2.38). If we choose X = C(S), X, to be
the set of polynomials of degree < r and P,, defined by (2.38), then P, g is usually not
continuous. If the standard type of collocation error analysis is to be carried out in
the context of function spaces, as described in the previous section, then C(S) must
be enlarged to include piecewise polynomial approximations P, g. One way of doing
this is by using the space L°°(S), the set of all essentially bounded and Lebesgue
measurable functions on S, with the norm the essential supremum || - ||. Here is
a brief outline on how P, can be extended to a projection operator on L*(S) (for
details, see Atkinson, Graham and Sloan[8]):

We call on the mathematical construction of point functions defined and ana-

lyzed in Atkinson, Graham and Sloan[8]. Let C(S) denote the subspace of L>(S)
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consisting of all cosets based on continuous functions

C(S)={lgllgeC9)}, geldl (2.55)
For a point P € S, define a linear functional on C'(S) by
lp(lg]) = 9(P) (2.56)

Then ||/p|| is bounded with ||ip|| = 1.

Then using the Hahn-Banach Theorem (see Rudin[16]), the functional [p can be
extended (albeit not uniquely) to a linear functional on all of L>(S) with preservation
of norm. We continue with the same notation for the extension. Let [g] € L*°(S) and

suppose ¢ is continuous at a point P. Then

lim lo([g]) = Ip([9]) = (Png)(P)

Q—P

Thus the value of [p([g]) possesses the expected value without requiring that g € C(S5).
Other properties of the extension are studied in Atkinson, Graham and Sloan|8].
Now, the operator P, ;)f (2.38) can be extended to L>(S):

Pal(P) = X by (W) U(s.8), P S, [deL(s) (257
where, here, [p denotes thé:éxtension. The range of P, is the set of all cosets of
functions that are piecewise polynomial (of degree < r) over the triangulation 7,

With this new definition of P,, the collocation equation may again be written
in the form (2.41), and the rest of the analysis is then entirely analogous to the
continuous case. Thus the usual next step is to ensure that (2.42) holds, where P,
is now considered as an operator on L*>(S). A sufficient condition for this is that

Jim [|Prg — glls =0, g€ C(5)
with the assumption that K is compact as an operator from L*(S) to C(S). This
follows, using a straightforward modification of the arguments given in the continuous

case.
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2.2 A Procedure for Developing a Method
of Arbitrarily High Order
Given an integral equation of the form (2.1),
u(P) = [u(@K(P,Q)dSq = f(P),P €S
we want to describe a procedsure for obtaining a collocation method based on inter-
polation of degree r for solving the equation (2.1) with an error of order O(h™ ).
2.2.1 Error Analysis of the Collocation Method
We consider the same framework as in the previous section. Let S be a smooth
surface, satisfying the conditions (2.35) and (2.36), and 7, = {A4, ..., Ak} be a con-
forming triangulation of S. Let
(Png)(mg(s,t) Zg mi(qi))li(s,t), g € C(S), P =my(s,t)
for ¢; and [; described in (2. 4) and (2.5), and my, the application from (2.37).
We seek solutions of (2.1) of the form
Zun vk)li(s,t), P =my(s,t) € Ay, vej =mi(g), k=1,..,n (2.58)
Substitute (2 58) into (2 1). To determine the values {u, (v )}, force the equation re-
sulting from the substitution to be true at the collocation points {qi, ..., ¢} described

n (2.4). This leads to the linear system

ﬁ:Zun (VK /K v, mi(s,t))0(s,1) -

k=1j=1
|[(Dgmy % Dtmk)(s,t)lda = f(v), i=1,.., fin (2.59)

which is of order f,n. For the error analysis, the following is true.

Theorem 2.2.1 Assume S is a smooth surface in R?® satisfying (2.35) and (2.36)
with each F; € C™2. Assume that equation (2.1) is uniquely solvable for all functions
f e C(S). Assume K : L*®(S) — C(S) is compact and u € C"™T(S). Then for all
sufficiently large n, say n > ng, the operators T — P,K are invertible on C(S) and

have uniformly bounded inverses. Moreover, for the true solution u of (2.1) and the
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solution u, of (2.41)
= nlloo < | (Z = Puk) | - [l = Pl (2.60)
Furthermore, if f € C"™(S), then
|t — tplloe < O™, 1> ng (2.61)
Proof: Consider P, as a projection operator from L%°(S) into itself. It is
relatively easy to show that P,u — u as n — oo. Since K is compact, by Lemma
2.1.5 we have that || —P,K|,, — 0asn — oo. From Theorem 2.1.4 and the
assumption that the equation (2.1 ) is solvable, it follows that the operators (Z —P,K)
are invertible on C'(S) and have uniformly bounded inverses for all sufficiently large
n, say n > nyg.
The bound (2.60) follows from the identity
u—u, = (T —P,K) " (u—Pyu)
The bound (2.61) follows from Lemma 2.1.2. By (2.54), the same bound holds for
[t — |-

O

Although we stated this theorem for the smooth surface case only, we mention that
it can be easily generalized to piecewise smooth surfaces.

It is clear now that the accuracy of a collocation method based on piecewise
polynomial interpolation depends on the degree of precision of the interpolation for-
mula. Theorem 2.2.1 asserts that an interpolation formula having degree of precision
r leads to an error in the collocation method of order at least O(h"*'). Since going
to high degree polynomials can significantly complicate formulas and computations,
a natural question, then, comes to mind: Using an interpolation formula with the
degree of precision r, can we do any better than O(h"*!) in our error bounds? The

answer is sometimes “yes”. There are two ways that we can improve the precision of
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the interpolatory quadrature formula, which in turn, will increase the accuracy of the
associated collocation method.

One of them has to do with the triangulation of the surface and the way we
refine it. Given a triangulation 7, of a polygonal region R with grid size J,,, at each
step we refine it to a new triangulation with a smaller grid size. In most finite element
methods for solving partial differential equations it does not matter how we do this
refinement as long as 9, — 0 as n —> oo; however, when integration is involved,
there is an “optimal” type of triangulation that can lead to cancellation of errors.

A simple example may illustrate how that can happen. Let g(s,t) be defined
on the unit simplex ¢ = {(s,t) | 0 < s+t < 1}. Approximate it by a constant
polynomial

g(s,t) ~ gla,a), (s,t) €0 (2.62)
with o # % This formula has degree of precision 0. Integrating it over o, leads to
/g(s,t)da R %g(a, @) (2.63)
which is exact for all polynomigls of degree 0. If we extend it to R = o U o, where
g ={(s,t) | =1 < s+t <0}, which is symmetric to o about the origin (see Figure
5) and consider as a node the reflection of («, ), which is (—«, —a/), we obtain
[ a(s.t)do ~ % 19 (@, @) + g(—a, )] (2.64)
which has degree of pre(I:{ision 1, being exact not only for all constants, but also for s
and ¢t. The left-hand side of (2.64) is 0 because & is symmetric to o about the origin,
while the right side of (2.64) is 0 by the fact that both s and ¢ are odd functions.

So it appears that by imposing some symmetry in our triangulations 7,, we
will sometimes obtain an increase in the degree of precision of a quadrature formula
and thus in the rate of convergence of the resulting numerical integration formula.

Given a triangle A € T, we will refine it into smaller triangles by using straight line
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(X0

©-1

0,0) 01

(-10)

Figure 5: The unit simplex and its symmetric

segments to connect the midpoints of the three sides of A. The four new triangles
obtained this way will be congruent and similar to the original triangle A. After such
a refinement of all the triangles in 7,,, the new triangulations 7, will have four times
as many triangles as 7,. As for the grid size, we have

S = %5,, (2.65)
We will call such triangulations obtained with this form of refinement symmetric
triangulations.

If we denote by

n fr
Eulg) = | [ gls,)do = 3" 9(a) Y [ lin(s,) do (2.66)
> k=1 i=14,
the error for a composite numerical integration of the form (2.7) with {g¢;} and {l;x}

defined similarly to those defined in (2.4) and (2.5) (only specifically for each triangle

Ag), and if the integration method has degree of precision d, then the ratio

E,(g)

E4n (g)
of the errors (2.66) should equal approximately 27 (¢+1).

(2.67)

If the initial degree of precision d from integrating over ¢ is an even number,

and if we are using a symmetric triangulation scheme, then the degree of precision is
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increased effectively to d + 1, as was the case in our previous example, since integrals
over symmetric triangles of polynomials of odd degree are 0. In this case it is possible
to improve the results in Theorem 2.2.1
Theorem 2.2.2 Assume all the conditions in Theorem 2.2.1 are satisfied. Further-
more, assume that T, is a symmetric triangulation and that the degree of precision r
of the interpolation formula is an even number. Assume u € C""%(S). Then, for all
sufficiently large n, say n > ng, the operators T — KP,, are invertible on C(S) and
have uniformly bounded inverses. Moreover, if f € C"™2(S) for the true solution u of
(2.1) and the solution Uy, of (2.49)

U — Tip||oe < O(R™2), 1> ng (2.68)

Proof: Since we use a symmetric triangulation, essentially all the triangles in
T, can be partitioned into pairs of symmetric triangles (as in Figure 5).

There will be at most O(y/n) = O(h™") triangles not included in such pairs of
triangles. Proceeding as in the proof of Theorem 2.2.1, the contribution to the errors
over the set of all such symmetric pairs is O(h"2), since the degree of precision of
the integration formula is now r + 1. The remaining triangles of number O(h™") will
have a composite error of

O(h™1) - Area (A)O(R") = O(R™ ) - O(h*) - O(K"Y) = O(R™"?) (2.69)
Combining the two errors, we have (2.68).

O

Recall the interpolation nodes that we use, given in (2.4). They depend on a
parameter «, with 0 < a < % As long as o # 0 (so that the nodes are not on the
edges of o) and o # % (so that if > 1, # 1 — 2«), we have the liberty to choose
any value for a. As it turns out, some particular values for o lead to higher degrees

of precision of the quadrature formula (2.7).
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As an example, consider the linear interpolation case, which leads to the quadra-

ture formula (2.14)

/gst [g(a a) + g(a,1—2a) + g(1 — 20, a)]

1
As we mentioned before, this formula has degree of precision 1 for any 0 < o < 3

1
However, if « = =, formula (2.14) becomes

/ iz =5lo (5:5) +(5:3) +9 (5:5) 210)
9(s 66 63) " 9\36 ‘
which has degree of precision 2. The proof is a straightforward computation with

the choices g(s,t) = s?, st, 2. Moreover, if we integrate it over R = ¢ U &, then the

froaie = Ao +s(6Y o
DY em

has degree of precision 3, since this is the case described prior to Theorem 2.2.2. The

formula

1
collocation method using piecewise linear interpolation with a = 3 for the radiosity
equation is described in great detail in Atkinson and Chandler[5]. We will discuss
at length particular choices of « for the quadratic interpolation case in the following

chapter.

2.2.2 Determining the Degree of Precision
of a Quadrature Formula

What concerns us now is how to find an efficient way of determining the degree of
precision of a quadrature formula. To simplify the calculations and the ideas, we will
restrict ourselves for the remainder of this chapter to integration formulas over the
unit simplex

/gstdaNqu] /lst (2.72)

for g; and /; given in (2. 4) and (2.5).
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Again, let E),, be the error in formula (2 66)
/gstda—qu] /lst (2.73)
To show that formula (2.7) has degree of precision r, we must verify that it is exact
for all polynomials s#/, 0 < i+ j <r. We need to find an easier way.
We will follow closely the ideas given in Sobolev[17]. Consider (s,t) € o,u =
1 — s —1, and the symmetric group Ss of permutations in the following context
Sy ={Ty, T4, ..., T5} (2.74)
where the functions 7T; : 0 — o, 1 =0, ..., 5 are given by
To(s,t) = (s,t)
Ti(s,t) = (u,t)
To(s,t) = (s,u)
T3(s,t) = (t,s) (2.75)
Ti(s,t) = (u,s)
Ts(s,t) = (t,u)
Theorem 2.2.3 For the quadrature formula (2.7) to be exact for all polynomials of a
given order r, it is necessary and sufficient that it be exact for all invariant polynomials
with respect to Ss, . e. for those which are unchanged under all mappings Ty, ..., Ts.

Proof: It is straightforward to verify that

/g(s,t)da — /g(n(s,t))da, i=0,..5

fr fr
Do gla) [lils,0do = 30 (T@) [ (Tls0) do (2.76)
which means that 0 " Y

E.(9) =E,(goT;), 1=0,..,5 (2.77)
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Then we can write

1 1 >
Bi6) = § 3 BaloT) = gBn (Yoo ) 278)
i=0 i=0
Denote by g the mean of the function g over the group S

5

g=> goT; (2.79)
=0
Then, formula (2.78) can be written
| .
Bu(9) = $Fuld) (280

By the properties of S5, ¢ is invariant under all permutations 73,7 = 0, ..., 5
goT,=g9, k=0,..,5 (2.81)
By (2.80), E,(g) = 0 if and only if F,(g) = 0, which means that E,(¢g) = 0 for all
polynomials g of degree < r is equivalent to F,(g) = 0 for all polynomials g of degree
< r that are invariant under all transformations 7;, ¢ =0,...,5.

O

This reduces our task to finding polynomials of a given degree that are invariant
under all transformations T;,i = 0, ..., 5, i.e. by (2.75) polynomials of a given degree
that are symmetric in s, ¢, and u. Then, if formula (2.7) is exact for such polynomials,
it will also be exact for all polynomials of the given degree.

The following theorem characterizes completely such polynomials that are sym-
metric in s, t, and u.

Theorem 2.2.4 Let 0y = s+t — s* — st —t* and oy = st — s°t — st>. Then g(s,t) is
a polynomial symmetric in s,t, and u if and only if g is a polynomial in o1 and o,.

Proof: We give only a sketch of the proof. The proof uses field theory and

Galois theory, so we do not go into details. The main idea is the following. It is known

that the polynomials symmetric in 3 variables, say x, zo, 3, must be polynomials in

(1) T —|—IL'2 +1‘3
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(2) T1T9 + T1T3 + ToT3
(3) T1T2T3

Let 1 = s, 3 = t, x3 = u. (Since u is not an independent variable,
the well-definedness of some embedding mappings must be verified. For details, see

Hungerford[13].) Then, we have
(1) s+t+u=1
(2) st+sut+tu=st+(s+t)(l—s—1t) =0y
(3) stu=st(l —s—1t) =0y
which proves our assertion. O

Combining Theorem 2.2.3 and 2.2.4, we obtain that the quadrature formula
(2.7) has degree of precision r if and only if it is exact for all polynomials in ¢; and
09 of degree < r. In the following table we give such polynomials for degrees 0, ..., 6

(o, €1, ..., Cg denote generic constants).

r Polynomial

0 Cp

1 Cp

2 co+ciog

3 co + c1o01 + 209

4 co + c101 + cao9 + 030%

5 co +cro1 + coog + 030% + cy0109

6 | co+cro1 + co09 + 030% + cy0109 + 05(7% + 060:13

Table 1: Polynomials in o1 and o9 of degrees 0, ..., 6



29

In conclusion, to develop an integration scheme of a given order, we construct
the interpolation polynomial (2.5), integrate it, approximate the integral of a function
by the integral of the polynomial in (2.7), and use the error bounds given in Theorems
2.2.1 and 2.2.2. By means described above we may improve the rate of convergence
given in Theorems 2.2.1 and 2.2.2.

Finding high order interpolatory formulas comes down to solving a system of
equations involving the problem parameter. We developed procedures for interpola-
tion nodes that make use of one parameter, a. Other parameters can be introduced

( see the discussion at the beginning of Chapter V).
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CHAPTER III

SUPERCONVERGENT METHODS
FOR INTEGRATION AND COLLOCATION

In this chapter, we consider some particular cases of the methods described in
Chapter II. We begin by discussing some collocation methods. We introduce the
radiosity equation, describe its properties and its solvability. We conclude by in-
troducing a particular piecewise quadratic collocation method for determining the
numerical solution of the radiosity equation. We show that this method is super-
convergent at the collocation nodes and consider numerical examples to illustrate
that. We also discuss general superconvergent collocation methods for the radiosity

equation based on interpolation of degree 7.
3.1 Superconvergent Collocation Methods

Consider the integral equation

u(P) = [ w(QK(P,Q)dSq = f(P), PeS (3.1)
for S a smooth surface in ]RS?, with K and f continuous functions.
Let 7, = {A1, ..., Ax} be a triangulation of S and my : 0 — Ay be defined as
n (2.37). Recall the interpolation formula
Zg g;)l(s,t), g€ C(S) (3.2)
Let
Png(my(s,t)) Zg my(q;))li(s,t), P =my(s,t) € Ay (3.3)
with the nodes {q¢1, ..., ¢y, } and {ll, ey lfr} given by (2.4) and (2.5).
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Define a collocation method using (3.3). Substitute
Ir
un(P) = Y un(vey)li(s,t), P € my(s,t) €Ay
7j=1
v, = my(g), k=1,...n (3.4)
into (3.1). This leads to the linear system

un(v;) — kznjlfjlun(uk,j)/K(vi,mk(s,t))zj(s,t)-

—1j= o

|(Dsmy, x Dymy)(s,t)|do = f(v;), i=1,...nf, (3.5)

We have shown in Theorem 2.2.1 that under suitable assumptions this method has
the error

[t = tnlloo < O(R™) (3.6)

where h is the mesh size of the triangulation 7,. Sometimes at the collocation node

points, the collocation method converges more rapidly than over all S, in which case

o Ju(wn) — (w0
lim

nTreo U — Un|oo

=0 (3.7)
Such methods are superconvergent at the collocation node points.

Let us examine more carefully the terms in (3.7). For simplicity, we work with
the solution @, of the iterated collocation equation (2.51). This should cause no
problems, since we know that the convergence of u,, to u is at least as rapid as that of
the solution of the collocation equation (2.41) to u, and the inverses for the collocation
equation and iterated collocation equation are related by the identities

(Z-KP,) ' = I+K(Z-P,K) P,
(Z-P.K)" = IT+P.(T-KP,) 'K (3.8)
(recall (2.54) for details). Moreover, u(v;) = u,(v;) at all collocation nodes.

By looking at the linear system associated with

(Z - KPp)(u—1u,) =K(u— P,u) (3.9)
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we have
 ax. [u(v;) =ty (v5)] < ¢, max, |K(Z — Pr)u(v;)| (3.10)
(see Atkinson[4, p. 449]). So, now we can focus on finding errors for (Z — P, Ju(v;).

First, we need some assumptions for the interpolation over . Recall that for

g € C(0), we are considering interpolation of degree r over o:

fr
9(s,t) = (Lag)(s,1) = > 9(g5)1;(s, 1) (3.11)
j=1
This leads to the numerical integration formula
/g(s,t)daz /ﬁgg(s,t)da (3.12)

which has a degree of precision of at least r. Assume there is a value 0 < oy < % such
that for ¢; and [; defined with o = «, the formula (3.12) is exact for all polynomials
in 01, 09 (introduced in Theorem 2.2.4) of degree < r+1, i. e. has degree of precision
r + 1. For the remainder of this section, we will assume a = ay.
Now, let 7 C IR? be a planar triangle with vertices {vy, vy, v3} and define the
mapping m, : 0 — 7 as in (2.37). Forfg € C(r), define
Loge.y) = 3 glm ()ly(s.) (3.13)
which is a polynomial of degree r in t}]lglparametrization variables s and ¢, interpo-
lating ¢ at the nodes {m,(q1), ..., m-(qs, )}
Define a numerical integration formula over 7 by
/g(x,y)de /ﬁTg(x,y)dT (3.14)
By our earlier assumption onT v, this has dTegree of precision at least r 4+ 1. In what

follows, for differentiable functions g, we will use the notation

" g(z,y)

axzaykfz (3 5)

k _
D9 (=, )| = max

We have the following result.

Lemma 3.1.1 Let 7 be a planar right triangle and assume the two sides which form
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the right angle have length h. Assume o = ay. Let g € C" (1), ® € C'(7). Then

[ @)@ ~ £)g(r,y)dr (@1 + |pei)dr

T

< Chr+2 'm§X{|Dr+lg|,|Dr+2g|}

(3.16)
where ¢ denotes a generic constant.
Proof: Let p;(x,y) denote Taylor expansions of g around a suitable point in
7, of degree i, for i = r, r + 1. Then, since g € C"2(7), we have that
19 = Pilloo < ch™H| D™ gloe, i=1,7+1 (3.17)

with || - ||« denoting the uniform norm on C(7).

From (3.17) it follows that
||pr+1 _pr“oo < ||g - pr+1||00 + ||g - pr”oo

< ch™?|| D" gl + ch" | D gl (3.18)

— it (hHDrJngHOO + ||Dr+lg||oo)
Since ® € C*(1), there is a constant ®, such that
| — Rolloc < ch [DO (3.19)

To shorten the notation, let £ =T — £,. We can write

/@ﬁ;ng = /(I)»C’T(Q—PrH)dT

+ [(@ = ®)L (i1 — pr)dr (3.20)
To see why (3.20) is true, note first that

Lp,=0 (3.21)
since formula (3.11) has degree of precision r. Also , by our assumption that for

« = ap, formula (3.12) has degree of precision r + 1, we have that
/ O L. pyadr = 0 (3.22)
Then, using these facts, (3.270) follows from expanding the right side and sim-
plifying. Taking norms in (3.20) and using the bounds in (3.17), (3.18), and (3.19),



34

we have

/@L;ng < ch’"+2||£;||-/|<1>|d7+ch||c;||-ch”l-

(RIID™*2glloe + 1D gl 0) ./|Dd>|dr (3.23)

The term on the right of (3.23) is bounded by

w2 | [(|@]+ |Da)dr

T

. mTaX{|DT+1g|, |Dr+2g|}

which proves (3.16).

O

This result can be extended to general triangles, but then the derivatives of ¢
and ® will involve the mapping m, from (2.37). Let h(7) denote the diameter of 7

and h*(7) the radius of the circle inscribed in 7 and tangent to its sides. Define

h(r)
= 3.24
() = ) (3.21)
Assume that for our triangulations 7, = {A, x}, n > 1, we have
sup L{Lr,lkae)% r(Apg)| < o0 (3.25)

Condition (3.25) prevents the triangles A, ; from having angles which approach 0 as
n — 00. Then, Lemma 3.1.1 can be generalized to arbitrary triangles as follows
Corollary 3.1.2 Let 7 be a planar triangle of diameter h, let g € C™2(7) and
® € C'(1). Assume a = ay. Then

/tID(SU, YT — L)g(x,y)dr| < e(r(r))h 2

[ (@1 + |paidr

T

max { D" g|, [ D"+2g|}
(3.26)
where ¢(r(7)) is some function of r(1), with r() from (3.24).
Proof: Let 7 be a right triangle. Then using a mapping of the form (2.37) ,
ms: T — T, We can write
[ @)@ — £)g(w. y)dr = (Do x Dam)| - [ (ms(s, ) (T — £,)g(ms(s,1))d7

(3.27)



35

which shows that this case can be reduced to the case where 7 is a right triangle
whose two sides which form the right angle have length A, keeping in mind that the

derivatives of ® and ¢ will depend on (7). Note that in this case Dymy, x Dymy, is a

constant.
O
We want to apply the above results to the individual subintegrals in
) = 3 [ Kluwmule,Dhutme(.0):
o |(Dsmyg x Dymy)(s,t)| dr (3.28)
Let
g(x,y) = u(mg(s,t)) |(Dsmy x Dymy)(s,t)]
Oz, y) = K(vi, m(s, 1)) (3.29)

Then, with the definition of £, given in (3.13), the term in the right side of (3.10),
\K(Z —P,)u(v;)| can be bounded by

. /‘I>(fv,y)(1— L7)g(x, y)dr (3.30)
k=1|A,
In the following, by g € C*(S) we mean g € C(S) and g € C*(S;) (i.e go F; €

C*(R;)), j =1,...,J, for R; and F} as in (2.35) and (2.36).
Theorem 3.1.3 Assume the hypotheses of Theorem 2.2.1 with each parametrization
function F; € C™?, assume u € C™%(S) and K € C*(S) with respect to Q). Assume
the triangulation T, of S satisfies (3.25). Then
N r+2
 ax, |u(v;) — U (vs)| < ch (3.31)
Proof: Following (3.10), we will bound
(fax [K(T — P )u(v)

using (3.30). On each triangle Ay, apply Lemma 3.1.1 or Corollary 3.1.2. (¢(r(7)) of

Corollary 3.1.2 will be denoted ¢ to simplify the notation.) Since v € C"*%(S) and
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K € C'(S) with respect to @, we have that

|DoK|,|Du|, i=7r+1,7r+2 (3.32)
are bounded.
Then, by (3.30)
- . S r+2
max |K(Z =P, Ju(vi)| < kglch A/ dr (3.33)
k

Since there are n = O(h™2) triangles, and the integral in the right side of (3.35) is
the area of Ay, which is O(h?), (3.35) leads to
- . r+2
 fax. IK(Z —P,)u(v;)| < ch (3.34)
By (3.10), this proves (3.31).
Note that although in this case the result (3.30) can be proven in an easier

fashion, we prefer to give this proof, since we want to use it later for other cases.

O

So, for @ = «yp, the collocation method defined by (3.3) is superconvergent.
These results can still be improved, sometimes, using symmetric triangles. This is

discussed more in Section 3.3.

3.2 The Radiosity Equation and Its Properties
Radiosity, an important quantity in image synthesis, is defined as being the
energy per unit solid angle that leaves a surface. The photometric equivalent is
luminosity. The radiosity equation is a mathematical model for the brightness of a
collection of one or more surfaces. The equation is
u(P) — @ / w(Q)G(P,Q)V(P,Q)dSy = E(P), P S (3.35)
where u(P) is the mdiositzj or the brightness, at P € S. E(P) is the emissivity at
P € S, the energy per unit area emitted by the surface.

The function p(P) gives the reflectivity at P € S, i. e. the bidirectional reflection
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distribution function. We have that 0 < p(P) < 1, with p(P) being 0 where there is
no reflection at all at P. The radiosity equation is derived from the rendering equation
under the radiosity assumption: all surfaces in the environment are Lambertian diffuse
reflectors. What this means is that the reflectivity p(P) is independent of the incoming
and outgoing directions and, hence, of the angle at which the reflection takes place.
Thus, p(P) can be taken out from under the integral of a more general formulation
(the rendering equation, see Cohen and Wallace[9]), leading to (3.35).

The function GG, a geometric term, is given by
[(Q=P)-np][(P - Q) -ng]
GP,Q) =
Q) P qp

cos fp - cos g
= & 7% 3.36
P —QJ (3:36)

where np is the inner unit normal to S at P, 0p is the angle between np and @) — P,

and ng and ¢ are defined analogously.

The function V (P, Q) is a wvisibility function. It is 1 if the points P and () are
“mutually visible” (meaning they can “see each other” along a straight line segment
which does not intersect S at any other point), and 0 otherwise. Surfaces S for which
V =1 on S are called unoccluded, and this is the case that we will consider here.
More about the radiosity equation can be found in Cohen and Wallace[9)].

We can write (3.35) in the form

u(P) — / K(P,Q)u(Q)dSq = E(P), P€S (3.37)
with °

K(P,Q) = @G(P, Q)V(P,Q), P,QeS (3.38)
or, in operator form

(I-Ku=E (3.39)
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3.2.1 Properties of the Radiosity Equation
We consider only the case that S is a smooth surface, although it need not be
connected. The properties of the integral operator K are not yet fully understood
when S is not a smooth surface, but they appear to be similar to the properties of
the double layer boundary integral operator on piecewise smooth surfaces from the
subject of potential theory.
Assume S has a local representation at each Py € S, i.e. there is a plane tangent
to S at Py with the surface given locally by
¢=f(&mn), (&n)in a neighborhood about P, (3.40)
We need to assume that each such function f is several times differentiable. Let S
be a smooth unoccluded surface in IR?. Decompose S into a finite union
S=5U---US; (3.41)
with each S; a smooth surface and intersecting each other along common edges at
most. Consider a parametrization function
Fy: Ry~ 5, (3.42)
with R?; a closed simply connected polygon in R? and F ; a function having a certain
degree of smoothness (later, in Section 3.3 we will impose conditions on the smooth-
ness of F;). Then having triangulations for the regions R;, j = 1,...,J will enable
us to produce a triangulation for S, as described earlier in Section 2.1.3, following
(2.36).
The function G(P, Q) given in (3.36) has a singularity at P = (@) and is smooth
otherwise. We also have
|IG(P,Q)|<¢, P,QeS, P#Q (3.43)
since

lcosfp| < c|P —Q], |cosby| < ¢|P— Q] (3.44)
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where ¢ denotes a generic constant independent of P and Q). For the proof of (3.44),
see Mikhlin[15, pp. 345-349].

If the surface S is smooth and since formula (3.43) holds, it is relatively easy
to prove that the integral operator K of (3.39) is compact as an operator on either
C(S) or L?(S) into itself (see Mikhlin[15, pp. 160-162]).

Next, let us examine the norm of K when considered as an operator from C(S)
to C'(S). We have the following, which is proven in Atkinson and Chandler[5].
Lemma 3.2.1 Let S be the boundary of a conver open set 0 and assume S is a
surface to which the Divergence Theorem can be applied. Let P € S, and let S be

smooth in an open neighborhood of P. Then

G(P,Q) >0, for Q€S (3.45)
and
/ G(P,Q)dSg = (3.46)
It then follows that i
K(P,Q) >0, P,QeS (3.47)
since V(P, Q) and p(P) are also nonnegative functions. In the case where S is the
unit sphere 2 +y% + 2% = 1, a straightforward computation shows that G(P, Q) = i

3.2.2  Solvability and Regularity
of the Radiosity Equation

The solvability theory for the radiosity equation (3.35) is relatively straightfor-
ward, being based on the Geometric Series Theorem.

Let S be a smooth unoccluded surface (not necessarily connected). Thus the
normal np is to be a continuous function of P € S. In addition to the radiosity

assumption (discussed at the beginning of 3.2), we will also assume that the reflectivity
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function p(P) € C(S) and that it satisfies
ol <1 (3.48)
From the physical point of view, what (3.48) means is that the surface does not reflect
100% of all the light that it receives, which is a reasonable assumption.
For the regularity of the solution of (3.35), we have

Lemma 3.2.2 Let m > 0 be an integer, S a smooth surface satisfying (3.41), with
the parametrization functions of (3.42) F; € C™ Y (R;),j = 1,...,J. Also, assume the
reflectivity function p € C™T(S). Then

uw € C™(S) = Ku € C™(S) (3.49)

Proof: The proof of this result is based mainly on the fact that

3iG(P, ) B 1
TR =0 (5 ar) - (3:30)

which is proven later (see Theorem 3.3.4). In this work, by 5P

OF(P) OF(P)
or = 0Oy

To get an idea of how the proof goes, consider the case m = 0. We have

0G(P,Q) 1
op :OQP—QO (351

we denote gener-

ically the derivatives , where P = P(x,y).

From this we can obtain that

/ IGP.Q) 0148 e c(8) (3.52)

oP
by an argument similar to that of Mikhlin[15, pp. 363-365]. For m > 0, one can use
an argument similar to that of Giinter[11, p. 49] to show the result.

O

It is worth mentioning that using results from potential theory, it is likely that
u € C™(S) implies something like Ku € C™2(S). We do not need such a result, so
we do not investigate it further.

Theorem 3.2.3 Let m > 0 be an integer. Let S be the boundary of a convexr open
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set 2, and assume S is a surface to which the Divergence Theorem can be applied.
Assume S is a smooth (possibly disconnected) unoccluded surface S C S that can be
represented as in (3.41) with each parametrization function of (3.42) F; € C™2(Ry).

Also, assume p,E € C™(S). Then

(a) The equation (3.35) is uniquely solvable for each E, with the solution u(P)

satisfying
1 E]so

L k] (359

[ufloo <

(b) The solution u € C™(S).

Proof: (a) Since p(P) is a continuous function, using Lemma 3.2.1 it follows
that I : C(S) — C(S) is a bounded compact operator with
1K < [lpll o0 (3.54)
Then by the assumption (3.48), we have
K] <1 (3.55)
Using the Geometric Series Theorem, we have that the operator Z — K : C(S) —

C(S) is invertible with

1
T K]
Thus, the equation (3.35) is uniquely solvable for all emissivity functions £ € C(S5).

- < (3.56)
Formula (3.53) follows from (3.39) and (3.56).
(b) For m = 0, the result follows from part (a). If m > 0, write (3.39) in the
form
u=F+ Ku
Use induction on m and Lemma 3.2.2 to show that u € C™(S).

O

The majority of applications are likely to have surfaces S that are only piecewise



42

smooth. In this case, the function G(P, @) has singular behavior along all edges and
corners, and as a consequence, the operator K is no longer as well-behaved as for
the smooth case. This case is discussed in Atkinson and Chandler[5, Section 4], and

Atkinson and Chien[7, Section 3] .

3.3 Superconvergent Collocation Methods
for the Radiosity Equation

A superconvergent piecewise linear collocation method for the radiosity equa-
tion was developed in Atkinson and Chandler[5]. Following the same ideas we will
investigate superconvergent methods based on interpolation of higher degree of the
solution of (3.35).

As in Chapter II, consider S a surface satisfying (3.41) and (3.42). Let

(A [ k=1,..n;} (3.57)
be a triangulation of R;, which will yield a triangulation
(A k=1,m}, A =F(ALy), k=1,..n (3.58)
of the subsurface S;. Then for S as a whole, define
T, = [_IJ (AL Tk=1,..n;} (3.59)
Let !
h = h, = max max diameter (A‘Z%k) (3.60)

1<5<J 1<k<n;

be the mesh size of this triangulation. (The number of triangles n is to be understood
implicitly; from now on, we dispense with it.)

As in Section 3.1 and earlier in Section 2.1, let a be a constant with 0 < a <
% and define the quadratic interpolation nodes in o = {(s,t) |0 < s,t,s +t < 1},

{q1,...,q6} as in (2.15). Define corresponding Lagrange interpolation basis functions
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l1(s,t), ..., ls(s,t) as in (2.16). For g € C(S5), define the quadratic interpolating poly-
nomial

(Prg) (my(s,t)) Zg me(g;)) (s, t), (s,t) €0 (3.61)

with the mapping my, : o ﬁ A‘ZE deﬁned in (2.37) and approximate

g(P) = (Png)(P), P =my(s,t) € A (3.62)
which leads to
6
[ 0(@Q1dsq = 3 g (mlay)) [[15(s,8) [(Darmi x D) (5, )] dor - (3.63)
A J=1 o
After a leilgthy calculation, we have
D el Do
3 ’ 33
|Pnll = (3.64)
1+ 10a — 702 15—8\/_ 1
, if <a< <
L (1 —3a)? 33 3

We define a collocation method with (3.61). Substitute
un(P) = iun(vk,jlj)(s,t), P =myg(s,t) € Ag, k=1,...,n (3.65)
into (3.35), with V' J;I 1 for an unoccluded surface. Then determine the values
{un(ve;)} by forcing the equation (3.35) to be true at the collocation nodes, i.e.

solve the linear systern

up(v;) — ZZun Uk j /G vi, mi(s,t)) (s, t)
k=1j=1

|(Dsm/1c ;Dtmk) (s, t)| do = E(v;), i=1,...,6n (3.66)

This can be written abstractly as
(Z - P.K)u, =P, E (3.67)

Also, introduce the iterated collocation solution

U, = F + Kuy, (3.68)
The collocation solution u, and the iterated collocation solution w, are related by

formulas (2.54). Also,
(T — KPo)iy = E (3.69)
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The operator

KP, :C(S) — C(S) (3.70)
is a numerical integral operator based on product integration. Thus an error analysis
for (3.66) can be based on the general theory for such numerical integral operators
(e. g. see Atkinson[4, Section 4.2] ). We will give an error analysis based on standard
projection operator theory instead. We have
Theorem 3.3.1 Assume S is a smooth unoccluded surface in IR?, and assume S C S’,
with S the type of surface required in Lemma 3.2.1. Assume S satisfies (3.41) and
(3.42) with each F; € C*. Then for all sufficiently large n, say n > ng, the operators
T — P.K are invertible on C(S) and have uniformly bounded inverses. Moreover, for

the true solution u of (3.35) and the solution u, of (3.67)

= unlloo < |(Z = Pok) | 11w = Paw) | 7> 1m0 (3.71)
Furthermore, if the emissivity E € C3(S), then
|2 — tp]|oo < O(R?), n > ng (3.72)

Proof: The proof follows the standard type of collocation error analysis, with
P, considered as a projection operator from L>(S) onto itself (see Section 2.1.4).
Using a standard continuity argument we can show that u € L*®(S) implies Ku €

C(S) and that K : L*(S) — C(S) is a compact operator. It follows then that
P — ¢, ¢ € C(S) (3.73)

Then by Lemma 2.1.5 we have that

P — K||oo — 0, as n —> 0 (3.74)
which by Theorem 2.1.4 proves our assertion. The bound (3.72) follows from the fact

that we are using quadratic interpolation.
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3.3.1 Two Superconvergent Piecewise Quadratic
Collocation Methods
The first superconvergent method based on quadratic interpolation that we want
to discuss is very simple, not requiring a special value for a;, but using a symmetric

triangulation. First, recall that the interpolation formula
6
~ D 9(a)li(s,t) (3.75)
=1

1
has degree of precision 2 for any 0 < a < 3 and so does the quadrature formula

/gsthNquz /lst (3.76)

However, extending formula (3. 76) to an mtegratlon formula over U = [0, 1] x
[0,1] or R = 0 Ua, and considering 6 more nodes (the points symmetric to the nodes

about the point ( ) and the origin, respectively), then formula (3.76) has degree

272

of precision 3.

Let
Lrg(z,y) Zg me(4:)) 1 (s, 1), (2,y) = m-(s,1) (3.77)
for g € C(1), with m, : o EH' of (2.37). We have the following.
Lemma 3.3.2 Let 7, and 1 be planar right triangles that form a square R of length
h on a side. Let g € C*(R). Let ® € L'(R) differentiable with first derivatives D,®,
D,® in L*(R). Then
/(I> z,y)(I — L;)g(z,y)dr /(|<I>| + |D®|)dr

wzth L.g9(x,y) = Lg(x,y), where (z, y) €n,i=1,2.

< ch*

3 4
-max {|D’|,|D"g|} (3.78)

Proof: Let po(z,y), ps(x,y) denote Taylor expansions around a suitable center,
of degree 2 and 3 of g over R. As before we have
lg = pilloe < D glloo, i =2,3 (3.79)
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From (3.79) it follows that
Ips = palloo < ch® (BIID*glloo + [1D*glloc) (3.80)
Also, there is a constant ®, such that
|& — ol < ch||DP]]; (3.81)
Let £, =T — L,. We can write

[oLgdr = [oL (g pyar
R R

+ /(‘I’ — @)L, (ps — p2)dr (3.82)
R
The reason why (3.82) is true is because

Lops =0 (3.83)
since formula (3.75) has degree of precision 2. Also, since formula (3.76) has degree

of precision 3, and ®, is a constant we have that

/ Oy L padr =0 (3.84)
R
Taking norms in (3.82) and using the bounds in (3.79)-(3.81), we have
/@L;gdr < ch|C||- / ®|dr + ch||L.]| - ch? -
R R
(BlID gl + 1D g]luc) - [ IDOIdr (3.85)
R

The term on the right of (3.85) is bounded by

cht

(@] + |pal)ar

3 4
-mng{|D gl, IDgl}
which proves (3.78).

O

If integrating over just one triangle, by a similar argument we can prove the following.

Lemma 3.3.3 Let 7 be a planar right triangle, and assume the two sides which form
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the right angle have length h. Let g € C*(7) and ® € L'(7). Then
/@(x,y)([— L)g(w, y)dr| < ch® [/ |q>|dT] -max {|D%|} (3.86)
As beforTe, these results can be extended to éeneral triangles, with ¢ replaced by
c(r(7)) or ¢(r(R)), respectively.
Now, we want to apply these results to the individual subintegrals in

Ku(v;) = p(vi)En:/G(vi,mk(s,t))u(mk(s,t))

T k=17
|(Dsmy x Dymy) (s,t)|do, i=1,...,6n (3.87)

with
g(s,t) = wu(mg(s,t))|(Dsmy x Dymy) (s, )]
O(s,t) = G (v, mg(s,t)) (3.88)
For that we need some information about the derivatives of G(P, Q) as Q@ — P. We
have the following result.
Theorem 3.3.4 Let i > 0 be an integer and let S be a smooth C**' surface. Then
DaG(P.Q)| < p =g P#Q (3.89)
for the function G(P,Q) of (3.35), with ¢ a generic constant independent of P and
Q.
Proof: The proof of this theorem is rather long and elaborate, and for this

reason we give it in a separate section, Section 3.3.2.

Now, we can prove our superconvergence result.
Theorem 3.3.5 Assume the hypotheses of Theorem 3.53.1, with each parametrization
function F; € C5(S). Assume u € C*(S). Assume the triangulation T, of S satisfies

(3.25) and that it is symmetric. For those integrals in (3.87) for which v; € Ay,
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assume that all such integrals are evaluated with an error of O(h*). Then
N . 4
max |u(v;) — up(v)] < ch (3.90)
Proof: As in the proof of Theorem 3.1.3, we will bound
max [K(Z =P, )u(v)

For a given node point v;, denote A* the triangle containing it and denote

o =T, - (A7)
By our assumption, the error in evaluating the integral of (3.87) over A* will be
O(h).

Partition 7* into parallelograms to the maximum extent possible. Denote by
T the set of all triangles making up such parallelograms and let 7,%) contain the
remaining triangles. Then

T =TT
It is easy to show that the number of triangles in 7. is O(n) = O(h~?), and the
number of triangles in 7, is O(y/n) = O(h™1).

It can be shown that all but a finite number of the triangles in 7%, bounded
independent of n, will be at a minimum distance from v;. That means that the
triangles in 7,(?) are “far enough” from v;, so that the function G (v;, Q) is uniformly
bounded for ) being in a triangle in 7,(%.

First, consider the contribution to the error coming from the triangles in 7,(2.
By Lemma 3.3.3 the error over each such triangle is O (h°||D%u||), since the area of
each triangle is O(h?) and using our earlier observation. Having O(h™") such triangles
in 7, the total error coming from triangles in 7,? is O (h*||D%ul|s0)-

Next, consider the contribution to the error coming from triangles in 7,("). By
Lemma 3.3.2, the error will be of size O(h?*) multiplied times the integral over each

such parallelogram of the maximum of the first derivatives of G/(v;, Q) with respect
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to (). Combining these we will have a bound

ch! / (1G] + |DG]) dSq (3.91)
sEAx
By Theorem 3.3.4, the quantity in (3.91) is bounded by
1
ent [ (1 + 7> ds 3.92
[v; — Q) ¢ ( )

CRVN
Using a local representation of the surface and then using polar coordinates,

the expression in (3.92) is of order
ch* (h* + h) + ch
Thus, the error arising from the triangles in 7,%) is O(h%).
Combining the errors arising from the integrals over A*, 7 and 7,(?, we have the
bound (3.90).

O

For collocation on piecewise smooth functions, see Atkinson and Chandler[5,
Section 4]. Here, we only state without proof a convergence result for the collocation
method (3.65).

Theorem 3.3.6 Assume S is a piecewise smooth unoccluded surface in R, and
assume S C S, with S the type of surface required by Lemma 3.2.1. Assume the
surface S satisfies (3.41) and (3.42) with each F; € C*. For the interpolation method
of (3.65), assume

IPallllK] <7 <1, n>ng (3.93)
for some constant v and some ng > 0. The norm ||P,|| is given in (3.64) and a
bound for ||K|| is given in (3.54) and (3.55). Then for sufficiently large n, say n >
ng, the operator T — P, K are invertible on X and have uniformly bounded inverses.
Moreover, for the true solution u of (3.35) and the solution u, of (3.67),

lu— tnlloe < (T =Puk) | llu = Paullo, 1= mo (3.94)
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Furthermore, if the emissivity E € C3(S), then
|t — tp||oe < O(R*), n > ng (3.95)
Next we will develop another superconvergent collocation method based on
piecewise quadratic interpolation of the solution. This time, we will increase the

order of the quadrature formula, first, by fixing a. Recall the interpolation formula
(3.61)
6
g(s,t) ~ ) = Z
of degree of precision 2 for any 0 < a < 1 The formula
/gstdafv/ﬁggst (3.96)
also has degree of precision 2 for general a. However, for a = ap = 0.103583400062101,
formula (3.96) has degree of precision 4, since it is exact for oy, 09, and o?. Extending
it over symmetric triangles, it has then degree of precision 5.
With the same notation as before we now have the following
Lemma 3.3.7 Let 7 and 75 be planar right triangles that form a square R of length
h on a side. Let g € C5(R). Let ® € L'(R) be three times differentiable with partial

derivatives of order 1, 2, and 3 in L'(R). Assume o = . Then

/<I> x,y) (I — L)g(x,y)dr /Z|D’(I>|d7'

R =0
with ETg(a: y) = Lg(x,y), where (z,y) € 1, 1 = 1,2.

< chb

© max {|Dlg|} (3.97)

Proof: Consider Taylor polynomials p;(z,y) of degree i, for i = 2,...5 such
that
lg = pillo < A D™ glloo, @ =2,...,5 (3.98)
Then
IPrs1 = Pelloo < ek (BIIDM 9] + [ D g]lso) for k=2,3,4 (3.99)

In addition, let ®;(z,y) be polynomials of degree i over 7 satisfying

|® — @]y < k™| DDy, i=0,1,2 (3.100)
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Write
/ 0L gdT = / ®L, (g — ps)dr
R R
+ /(q> — ®0) L, (ps — pa)dr
R
+ [(@ = @)L (1~ pa)dr
R
+ /(@ —®y) L (ps — po)dr (3.101)
R
+ /(‘1’1 — ©0)Lopadr
R
+ /((I)Q - (I)l)ﬁ;_png
R

To see why (3.101) is true, multiply out the terms on the right. After a series
of cancellations, we get
/ oL gdr — / Oy L psdr — / oL podr + / ©u L podr (3.102)
R R R R
The last two terms in (3.102) are 0 because formula (3.61) has degree of precision 2,
and the second integral in (3.102) is 0 because ®, is a constant and formula (3.96)
has degree of precision 5.
Next we will show that the last two integrals in (3.101) are 0. We have
L, [(®) — Do)ps] = L. [(®) — Bo)Lopa] (3.103)
since [(®1 — ®g)p4] and [(P; — Py) L, p4] agree at the collocation node points

ti, j=1,...,12 as we can see in the following

(@1 — @) Lrpa] (1) = (D1 — Po)(115) (Lrpa) (15)
= (@1 — o) ()pa(1t;) (3.104)

= [(®1 = Po)pa] (1))

Now, because the integration formula (3.96) has degree of precision 5 and
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deg[(®1 — Do) L, p4] < 3, we have
[ £Ll(@ = @) Lpi)dr =0
i.e.
/(<1>1 — &)L pydT = /ﬁT (@1 — @)L pa] drT (3.105)

R
Next we can write

/ (®1 — Bo)L.padr = / (@1 — Bo)padr — / (@1 — Bo)Lopadr
((1)1 - (I)O)p4d7' - /LT [(‘131 - (1)0)£7—p4] dr
(@) — Bo)padr — /zT (B — Bo)pa]dr  (3.106)

L [(®y — ®o)ps)dr

[l
O — 3— 3 ~— >

where the second equality is true by (3.105), the third by (3.103) and the last one
holds because deg[(®; — Pg)p4] < 5.
A similar argument leads to
/(<I>2 — B L pydr =0 (3.107)
Now, take norms in (3.10?) and use the bounds (3.98)-(3.100) to get (3.97).

O

If the integration is done over a single triangle, then we have the following
estimate (the proof is similar to that just given).
Lemma 3.3.8 Let 7 be a planar right triangle and assume the two sides which form
the right angle have length h. Assume o = «g. Let g € C°(7),® € L'(1) twice
differentiable with derivatives of order 1 and 2 in LY(7). Then

‘/q)xy(l L)g(x,y)dr

where ¢ denotes a generic constant.

< ch? /Z|D <I>|d7} - max {|D’g|} (3.108)

7_10

=3,...,
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As described before, the last two results can be generalized to arbitrary triangles
under the assumption (3.25).
In this case, we have the following superconvergence result.
Theorem 3.3.9 Assume the hypotheses of Theorem 3.3.1, with each F; € C°. As-
sume u € CY(S). Assume the triangulation T, of S satisfies (3.25) and that it is
symmetric. For those integrals in (3.87) for which v; € Ay, assume that all such
integrals are evaluated with an error of O(h®). Then
max [u(v;) — G (vi)| < ch® (3.109)
Proof: We give bounds for
Jax |K(T =P, )u(v))]
With the previous notations we have that the contribution to the error coming from
the triangles in 7,2 is O (h°||D%ul| o)
The contribution to the error coming from triangles in 7,(!) is
3
ch® S_/sz%i'w _1Q|jdsQ (3.110)
Using a local representation of the surface and then using polar coordinates,
the expression in (3.110) is of order
chs <h,2 +h+logh+ %)
Combining the errors we have (3.109).

O

Numerical Examples. As a smooth surface consider a “two-piece surface.” Define
S1 = {(z,y,0) |0 <z,y <1}
552) = {(x,y,z) |0<z,y< 1,z:2—:c2} (3.111)
and let S®) = 5, U ).

We solve the radiosity equation (3.35) with the emissivity E(P) so chosen that
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the true solution is
B 1

Va2 +y?+ (2 — 0.5)?
The reflectivity function p(P) = 1; for the solvability function of (Z — K)u = E, this

u(z,y, 2) (3.112)
is okay, since ||| < 1 due to the surface not being closed. In Table 2, we give

= thalloo = s fufon) — uao)]
for « = ap and a = 0.2. The results for & = 0.2 are consistent with a convergence
rate of O(h*) predicted by Theorem 3.3.5. The results for @ = « appear to agree
with a convergence rate of O(h®) predicted by Theorem 3.3.9, which illustrates the

superconvergence.

a = a=02
n | ||u— uy|lw | Ratio | ||u — uy||e | Ratio
4 1.78 E-4 1.15 E-3

16 1.14 E-5 15.6 9.85 E-5 | 11.73

64 4.53 E-7 25.1 7.62 E-6 | 12.92

256 | 1.73 E-8 26.2 5.02 E-7 | 15.17

Table 2: Errors in solving radiosity equation on S (2)

As a simple piecewise smooth surface, we use the unit cube
S =10,1] x [0,1] x [0,1]

The emissivity is chosen so that the true solution is

1
u(z,y,2) = (3.113)
v

(z = 10)*+ (y = 1)* + (2 — 3)?
The reflectivity function is p = 0.5. The results for ||u — u, || are shown in Table 3.

The ratios approach 8 as n increases, which is consistent with a rate of convergence

of O(h?) as predicted by Theorem 3.3.6. For this case we did not take higher values



for n, because the system to be solved has order 6n.

n | ||u— uy||leo | Ratio

12 6.39 E-8

48 | 9.04 E-9 7.00

192 | 1.26 E-9 7.15

Table 3: Errors in solving radiosity equation on the unit cube

3.3.2 The Proof of Theorem 3.3.4

We want to prove (3.89)

We have by (3.36)
cosfp cosf
G(P,Q) = |PP_—Q|2Q
Denote by
cosf
FPPQ) = 5= g|
cos 0

Then, we can write
G(P,Q)=F"(P,Q)- F?(P,Q)
and we have
Dya =y ( )Dzs Y(FT)(P.Q) - DE(FO)(P,Q)
(This derivative notation is explalned in the proof of Lemma 3.2.2).
By (3.44)

lcosOp|, |cosbg| < c¢|P — Q|

%)

(3.114)

(3.115)

(3.116)

(3.117)



56

which leads to
|| [F9 < ¢ (3.118)

Claim:

_c
[P —Qf
Proof of claim: Fix P € S. The proof of (3.119) is very delicate. We will use

IDLF” (3.119)

L @
|DLF?| <
both a local parametrization of the surface as well as formal reasoning. Assume the
surface S can be represented locally by

2= f(z,y) (3.120)
with f € C"*2. We consider P to be the origin of a coordinate system and @ an

arbitrary point in S. Then we have

P = (0,0,0)
Q = (v,y,f(z,y)
np = (0,0,1) (3.121)

ng = (—fz(x,y), —fy(x,y), 1

)
(Implicitly, we then also have that f(0,0) = f,(0,0) = f,(0,0) = 0). We can write
(Q—P)-np Q

cosp= —— L 0 — _Z .NP
P —Q| np| Q]
(Q—P)-nq Q
cosfg = —— 2t = = < .N© (3.122)
P=Ql-Tngl _ 1Q
where we denoted by N = np and by N9 = |—Q| Note that by (3.121), NT is
ng

independent of @ (and, hence, of x and y), while N? is a function of Q, i.e. of x and

y. The inequalities (3.118) can now be written

Q
W'NP S C
‘&-NQ < ¢ (3.123)

Let’s proceed first with the derivative of F¥. In what follows we will use the

: 0 . : :
notation g,, rather than 8_9’ for the derivative of a function g with respect to . We
x
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have

OFf

_ % P

_ (QI-NP _2(Q-NP) (Q-@)) 5121

QI Q[*
Q.- N? 2(Q-NP) (Q-Qa)

Q] QF
For the first term on the right of (3.124) we have

Q:-N" _ (1,0,£)-(0,0,1)
@] Va2 + g2+ (f(x,y))?
f
- 3.125
Va2 + g+ (f(,y))? )

_ (el
which is bounded. The second term on the right of (3.124) can be rewritten as

() ()

The first term in (3.126) is clearly bounded because of (3.123). For the second
term in of (3.126), note that by (3.121), @, = (1,0, f,). Then by our assumption on

the smoothness of f , |f;| is bounded, and hence, so is

IQI
. OFF c o .
We have just proved that < Pql An identical argument will lead
P c
to the result < . So we have that
‘ Oy |~ [P - Q|
DoFF| < 3.127
Do < P - Q| (3:127)
In a similar way we prove that the claim is also true for F9. We have
-’ = (g NQ>
Q7
Q- N® Q- NZ
- @ (%o + 4
Q| Q|
2 ( |C)2|El ) (3.128)
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Q. - N© Q-Aﬁ__Q@QJWﬂ(Q-Qw

_|_
Q| Q| Q[
The first term on the right of (3.128) is obviously 0. The second term on the right of

(3.128) is bounded because @ is a unit vector (so bounded) and

Q]
1 foae+ oty
N:? = (_fmma _f T 0) + e T (fwa f 7_1)
nq] ! nol? !
and we assumed f € C"*2. The third term on the right of (3.128) can be rewritten
(similarly with (3.126)) as
%) (ror ™)
2| % -Qp ) [ =5 - N9 (3.129)
QQ| QP
which is bounded by (3.123) and by our earlier discussion following (3.126).
OF¢ c
The same argument (with x replacing y ) proves that < and so
( )C oy |~ |P-Q
DoF?| < 3.130
2o ‘—LP—Q| (3.130)

The computations for higher order derivatives get more complicated, but the
idea of the proof is the same. Use the inequalities (3.123) and the fact that the norm

of a vector of the form @ - A is bounded if the components of A involve f and/or

Q|
@ - Qa, @ N@ Q-Nf,etc.)

o R ToTRTa]

This concludes the proof of the claim.

its derivatives (

For the derivatives of G we have

pclie-—ar = 3 () st - @ jphrece -

< c

which proves (3.89).

3.3.3 Generalized Superconvergent Collocation Methods
for the Radiosity Equation

Following the results given in Atkinson and Chandler[5] and our previous work,

we want to develop superconvergent collocation methods based on interpolation of
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higher degree. To better understand how that works, let us consider first the case of
cubic interpolation. Recall the interpolation formula

0~ glals(s ) (3131)
for ¢; and [; defined in (2.11), (2.19) Jz;d (2.20). Formula (3.131) has degree of

precision 3, and so does its associated quadrature formula
fr

/gstda—quJ /lstda (s,t) €0, ge C(o) (3.132)
But for @ = ag = 0. 199109 formula (3.132) has degree of precision 4 (it is also
exact for 03). Again, extending it to a formula over a square (formed by symmetric
triangles), we obtain a quadrature formula of degree of precision 5. Let

Lrg(x,y) Zg m-(q;)i(s,t), (x,y)=m.(s,1) (3.133)

We have
Lemma 3.3.10 Let 71 and 1 be planar right triangles that form a square R of length
h on a side. Let g € C°(R). Let ® € L'(R) two times differentiable with derivatives
of order 1 and 2 in L'(R). Assume o = ag. Then
/@xy([ L)g(z,y)dr

< ch® / |®| + |D®| + |D*®|)dr| - max {|D1g|}

R i=4,5,6

(3.134)
with L.g(z,y) = L, 9(x,y), where (x,y) € 74, i =1, 2.
Proof: Let p;(z,y) denote Taylor expansions around a suitable center, of
degree i, of g over 7, for + = 3,...5. We have
lg — pilloe < chH| D gllae, i=3,...,5 (3.135)
It then follows that
ks = Pl < B (RIDH20% 4 [DFg]) for k=34 (3130
Also, let ®;(x,y) be polynomials of degree i over T satisfying
|® — ®y]|y < k™| DDy, i=0,1 (3.137)
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We can write

/ 0L gdT = / ®L, (g — ps)dr

R

+ /(q> — ‘I)o)ﬁ;(pf) — pa)dr
R

n /(q> ®) L. (ps — ps)dr (3.138)
R

+ /(@1 — q’o)ﬁ;de
R

Formula (3.138) is true, because after multiplying out the terms on the right we obtain

/ oL gdr — / B L. psdr — / OL. pydr + / O, L. pydr (3.139)

The last three terms in (3. 139) are 0 because formulas (3. 131) and (3.132) have degrees

of precision 3 and 5, respectively. The last integral in (3.138) is 0 and the proof is
identical to the one given in Lemma 3.3.7.

Now, take norms in (3.138) and use the bounds (3.135)-(3.137) to get (3.134).

O

For integration over single triangles, as expected, the bound will only be of order
O(h?).

Consider formula (3.87) with ¢ = 1,...,10n. The superconvergence result that
follows is
Theorem 3.3.11 Assume the hypotheses of Theorem 3.3.1, with each F; € C%. As-
sume u € C%(S) and a = . Assume the triangulation T, of S satisfies (3.25) and
that it is symmetric. For those integrals in (3.87) for which v; € Ay, assume that all
such integrals are evaluated with an error of O(h®). Then

(ax [u(v;) — 1 (v;)| < ch®logh (3.140)

Proof: We give bounds for
max |K(Z =P, )u(vi))]

1<¢<10n
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With the previous notations we have that the contribution to the error coming from
the triangles in 7,2 is O (h%||D%ul|s).
The contribution to the error coming from triangles in 7,(!) is
2
ch S_/A*jz:%mdsb (3.141)

Using a local representation of the surface and then using polar coordinates,

the expression in (3.141) is of order
ch® (h? + h +log h)

Combining the errors we have (3.140).

O

Now we want to investigate superconvergent collocation methods based on in-
terpolation of any degree r. It is clear from our work so far (for quadratic and cubic
interpolation) that we have to distinguish two cases: where r is odd and where r is
even.

Interpolation of odd degree. We consider the collocation nodes and the interpo-

lation basis functions of (2.4) and (2.5) for some odd number r. The formula
fr
g(s,t) = > g(g)li(s,t), (s,t)€o, geC(o) (3.142)
j=1

1
has degree of precision at least r for any 0 < a < 3" Assume r is an odd number.

The formula
fr

/g(s,t)da ~ 3 9(0) /lj(s,t)da, g€ C(o) (3.143)

also has degree of precision r. Suppose we can find a value 0 < g < % , such that
for & = ap, formula (3.143) has degree of precision r + 1. Then, as it happened in
the cubic case, if we extend it to a rectangle, it will have degree of precision r + 2.
We have the following result.

Lemma 3.3.12 Let 1y and 1» be planar right triangles that form a square R of length
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h on a side. Let g € C""3(R). Let ® € L'(R) two times differentiable with derivatives

of order 1 and 2 in L'(R). Assume o = ap. Then

[ @)1 - L)g(z,y)dr

gch’"+3[/(|<I>|+|Dd>|+|D2<I>|)dT- max  {|D'g|}

R i=r+1,r4+2,r4+3

(3.144)
with L.g(z,y) = L,9(x,y), where (x,y) € 73, i = 1, 2.
Proof: Let p;(z,y) denote Taylor expansions around a suitable center, of
degree i, of g over 7, for i = r,r + 1,r + 2. We have
lg — pilloe < ch | D glla, i=r,r + 1,17+ 2 (3.145)
Then
IPrs1 = Prlloo < ch¥H! (BID*2g]>° + [[Dglloo) for k=rr+1  (3.146)
In addition, let ®;(z,y) polynomials of degree i over 7 satisfying
|® — &, < k™| DDy, i=0,1 (3.147)
We can write

/ OL gdr = / OL(g — prio)dr
+ /(q) - @0)£;(pr+2 — Pry1)dT
+ [ (@ = ®)L (pra1 — pr)dT (3.148)

+ (®1 — (I)o)ﬁ;erdT

I Y— Y >

Formula (3.148) is true, because after multiplying out the terms on the right we obtain
/ oL gdr — / BoL. prsadr — / oL pdr + / &L prdr (3.149)
The last three terms in (3. 149) are 0 because formulas (3. 142) and (3.143) have degrees

of precision r and r + 2, respectively. The last integral in (3.148) is 0 since

L, [((I)l - q)U)prJrl] =L, [((I)l - (I)O)ETpr+1] (3-150)
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and hence

/((I)l - (I)O)ﬁ;pr—l—ldT = /ﬁ; [((1)1 - q)g)p,«+1] dr =0
R R
(just as in the proof of Lemma 3.3.7). Taking bounds in (3.148) and using (3.145)-

(3.147) we obtain (3.144).

If integrating over a single triangle, the bound is given by
Lemma 3.3.13 Let 7 be a planar right triangle and assume the two sides which
form the right angle have length h. Assume a = «y. Let g € C"™"%(7),® € L'(1)

differentiable with first derivatives in L'(7). Then

[ @)@ - £)g(a,y)dr

< ch+? { JICIE |D<1>|>df} -max {|D"*1g|,|D"*?g|}
' (3.151)
where ¢ denotes a generic constant.
Similar results hold for arbitrary triangles.
Consider formula (3.87) with i = 1,...,nf,. Now we can address the question of
superconvergence.
Theorem 3.3.14 Assume the hypotheses of Theorem 3.3.1, with each F; € C™2.
Assume u € C™2(S). Assume the triangulation T, of S satisfies (5.25) and that it
is symmetric. For those integrals in (3.87) for which v; € Ay, assume that all such
integrals are evaluated with an error of O(h™3). Assume a = ap. Then
 fax, [u(v;) — 1 (v3)] < ch" 3 logh (3.152)
Proof: We bound
JDax [K(I =P, )u(vi))]
using the previous lemmas. By Lemma 3.3.13 the contribution to the error coming

from the triangles in 7,?) will be O (h™+3||D"+2ul|).

Using Lemma 3.3.12 we have that the contribution to the error coming from
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triangles in 7,(!) is of order

2

1

chr+3 / __4s (3.153)
SA*JZ:% lv; — Q) ¢

Using a local representation of the surface and then using polar coordinates,
the expression in (3.147) is of order
ch™™* (h? + h+logh) = O(h™*log h)

Combining the errors arising from the integrals over A*, 7.V, and 7,¥, we have

(3.152).
O
Interpolation of even degree. Consider the interpolation formula
g(s,t) ~ ig(qj)lj(s,t), (s,t) €0, g€ Clo) (3.154)
with r an even number. Thér? 1the quadrature formula
/g(sat)da ~ ig(qj), g €Clo) (3.155)

o J=1
has degree of precision at least r. Considered over a rectangle formed by two sym-

metric triangles, it has degree of precision r + 1, since r is an even number. Defining
a collocation method with (3.154), for the solution of the collocation equation and
the true solution of the radiosity equation, we have the error estimate

lu = uy|| = O (A7) (3.156)
For the convergence at the collocation nodes we have
Lemma 3.3.15 Let 71 and 1 be planar right triangles that form a square R of length
h on a side. Let g € C"™(R). Let ® € L'(R) differentiable with first order derivatives
in L'(R). Then
[ @@ n)(1 - £)glw,y)dr

R T
with L,g(x,y) = L, g(x,y), where (z,y) € 7, i = 1, 2.

< Chr+2

[ (@1 + |pai)dr

max {|Dg|} (3.157)

i=r+1,r4+2

Proof: As mentioned earlier, we can find polynomials p;(z,y) of degree i such
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that
lg = pilloe < k™MD ™ glloo, i=1,7+1 (3.158)
which implies
Iprs1 = prlloo < b (RD"glloc + 1 D" g]lo) (3.159)
We can also find a constant ®, such that
|® — @], < ek DD, (3.160)
Then we have the equality

/@ﬁ;gdr - /@E;(g—prﬂ)dT
R R

+ [(@ = ®)L (i1 — pr)dr (3.161)
R
since formula (3.154) has degree of precision r and formula (3.155) has degree of
precision 7 + 1.

Using the previous estimates, we obtain (3.157).

O

For integration over one triangle only, the term in 4 in (3.157) is only A" . We
use these results to prove the following superconvergence result.
Theorem 3.3.16 Assume the hypotheses of Theorem 3.3.1, with each F; € C™2
Assume u € C"™2(S). Assume the triangulation T, of S satisfies (5.25) and that it
is symmetric. For those integrals in (3.87) for which v; € Ay, assume that all such
integrals are evaluated with an error of O(h™?). Then
 fax, lu(v;) — i ()| < ch™+? (3.162)
Proof: Again we bound
JDax [K(I =P, )u(vi))]

using the previous lemma. With the same notations as before, we have that the

contribution to the error coming from the triangles in 7,? will be O (h™+2|| D"+ u/|).
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The contribution to the error coming from triangles in 7,(!) is of order

r+42
ch / Z e QIJ (3.163)
SoaxJ=0 17
Using a local representation of the surface and then using polar coordinates, the
expression in (3.163) is
Chr+2 (h2 + h) - ChT+2 — O(hr+2)
Combining the errors arising from the integrals over A*, 7,V and 7,¥, we have

(3.162).

O

Note that this case corresponds to the first type of superconvergent piecewise
quadratic collocation method, that we described in Section 3.3.1. The second method
presented there is somehow “special”, meaning it is not always possible to develop
such a method. Notice that in that case we found a value for a that increased the
degree of precision with 2, and then 3, using symmetric triangles. Since when r is
even we can always improve the precision by considering symmetric triangulations, it
makes no sense to determine a value oy that would only increase the degree with 1
(since the symmetry does that, anyway). That’s why the approaches and the results
are different for the two cases: r odd and r even. As for a generalization of the
second superconvergent, piecewise quadratic method that we presented, there is not
much hope there. That would mean to increase the degree of precision with 2, i.e.
have the quadrature formula be exact for all the polynomials in o; and o, of the given
degree. That means that one variable, «, has to satisfy a number of equations, which
(especially if r is large) may not have a solution.

In fact, even increasing with 1 the degree of precision (what we assumed was
possible in order to have a superconvergent method) is sometimes difficult. As an

easy example, consider the case = 5. To increase the degree of precision to 6, the



corresponding quadrature formula must be exact for both o} and o3.
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CHAPTER IV

A COLLOCATION METHOD FOR SOLVING
THE EXTERIOR NEUMANN PROBLEM

In this chapter we study the numerical solution of a boundary integral equation
reformulation of the exterior Neumann problem. We give an outline of the problem
and its solvability. Then, we propose a collocation method based on interpolation
and give an error analysis. Numerical examples for the piecewise constant collocation
method (centroid rule) conclude this chapter.
4.1 The Exterior Neumann Problem

Let D denote a bounded open simply-connected region in IR?, and let S denote
its boundary. Let D = DU S and denote by D, = IR® — D the region complementary
to D. Let D, = D, US. At a point P € S, let np denote the unit normal directed
into D, provided that such a normal exists. In addition, we will assume that S is a
piecewise smooth surface satisfying (3.41) and (3.42).
The Exterior Neumann Problem

Find v € CY(D,) N C?(D,) that satisfies

Au(P) = 0,P€D.
Ou(P)
prealii f(P),PeS (4.1)
u(P) =O(P™), ou(P) = O(|P|™®) ,as r=|P|— oo uniformly in L

or
with f € C(S) a given boundary function.

P

The boundary value problem (4.1) has been studied extensively (see Mikhlin[15,
Ch. 18], Giinter[11, Ch. 3], Colton[10, Section 5.3]). Here we only give a very brief
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look at results on the solvability of the problem (4.1).
The Divergence Theorem (see Atkinson[4, Theorem 7.1.2]) can be used to obtain
a representation formula for functions that are harmonic inside the region D,. Let

u € CY(D,) N C?(D,) and assume that Au(P) =0 at all P € D,. Then

u(Q) dS(Q) o [ 1
ong |P-QI [“(Q)'%LP—QJCZSQ

_ (4 — Q(P)Ju(P) , P€eS (42)
4mru(P) , PeD,

(see Atkinson[2].) In formula (4.2), Q(P) denotes the interior solid angle at P € S,
defined in Atkinson[4, p. 430]. If S is smooth, then Q(P) = 27. For a cube, the
corners have interior solid angle of %7?, and the edges have interior solid angles of 7.

To study the solvability of (4.1), consider representing its solution as a single

layer potential

A -

The function p in (4.3) is called a single layer density function. The function u(A) in

u(A) :/ ”(Qiﬂ dSg, A€ D, (4.3)

(4.3) is harmonic for all A ¢ S. For well-behaved density functions and for A ¢ S, the
integrand in (4.3) is nonsingular. Even though for the case A = P € S, the integrand
in (4.3) becomes singular, it is relatively straightforward to show that the integral

exists and moreover, if p is bounded on S, then

sup |u(A)] < cl[pl (4.4)
A€lR3

For a complete description of the properties of the single layer potential, see Giinter[11,
Chapter 2].

Now for the function u of (4.3), impose the boundary condition from (4.1) to

get

lim np- Vv
A—P

/|j(—%| dsQ] — f(P), P€S (4.5)

for all P € S at which the normal np exists (which implies Q(P) = 27). Using a
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limiting argument, we obtain the second kind integral equation

2woP)+ [ Q) o || dse=1P Pest o

"onp | [P — Q|
The set S* is to contain all points P € S at which a normal is defined. If S is a

smooth surface, then S* = S; otherwise, S — S* is a set of measure 0. The kernel

function in (4.6) is given by
0 l 1 ]_np-(P—Q)_ cos Op (47)
onp [|P - Q| P —-QP P —QP '

where 0p denotes the angle between np and (P — @)). Equation (4.6) can now be

written as
1 cos Op .
P)+ o [o(P) 5oty dSq = f(P), Pes 48
HP)+ 5 [ HP) 52 dSe = 1(P), P (4.8
A 1 A
where f(P) = 2—f(P). For simplicity, we will write f(P) instead of f(P).
m
Write the equation (4.8) in operator form:
(IT-K)p=Ff (4.9)

The properties of the integral operator K and, implicitly, the solvability of equation
(4.1) have been studied intensively in the literature, especially for the case that S is
a smooth surface. For S sufficiently smooth, K is a compact operator from C(S) to
C(S) and from L*(S) to L?*(S). These results are contained in many textbooks, for
example see Kress[14, Chapter 6], or Mikhlin[15, Chapters 12 and 16]. We will just
state the following solvability result.

Theorem 4.1.1 Let S be a C? surface. Then the equation (4.9) has a unique solution
p € X for each given function f € X, with X = C(S) or X = L?*(9).

This theorem then leads to a solvability result for the Exterior Neumann Problem
(4.1)

Theorem 4.1.2 Let S be a smooth surface with D, a region to which the Divergence
Theorem can be applied. Assume the function f € C(S). Then, the Neumann problem

(4.1) has a unique solution u € C*(D,).
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For the case when S is only piecewise smooth, the properties of K and the solvability
of (4.8) are not yet fully understood. We will assume that Theorem 4.1.1 is true for

the piecewise smooth surfaces that we will consider in our work.

4.2 A Collocation Method
We want to study the numerical solution of (4.8) using a an integral equation
reformulation of (4.1) have been used before (see Atkinson and Chien[6] or Atkinson[4,
Section 9.2]), but with the collocation nodes on the boundary of each triangular
element. As mentioned in Chapter I, there are problems with defining the normal at
the collocation points which are common to more than one triangular face, especially
if the surface itself is approximated. This in turn means it is difficult to evaluate the
kernel function in equation (4.8). For these reasons it makes sense to try collocation
methods that use only interior collocation node points, like the ones described in
Chapter 1II.
We will use the same framework that we used for the radiosity equation. Assume
the surface S satisfies (3.41) and (3.42) and has a triangulation 7, = {A,x | i <k < n}
with mesh size h. For g € C(S) define an operator P, by
Zg mi(q;)) Li(s,t), (s,t) €0, P =my(s,t) € A (4.10)
with ¢; and [; deﬁned in (2.4) and (2 5). This interpolates g(P) over each triangular
element Ay € S, with the interpolating function polynomial in the parameterization
variables s and ¢. Since P,g is not continuous in general, we need to enlarge C(S)
to include the piecewise polynomial approximations P,g. To do this, we consider the
equation (4.9) within the framework of the function space L*°(S) with the uniform
norm || ||», as described in Section 2.1.4. Then, P,, : L>(S) — L*(S) is a bounded

projection operator, with ||P,|| given by (2.27).
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Define a collocation method v;rith (4.10). Denote v ; = my(q;). Substitute
pa(P) = Z:lpn (vr,5) Li(s, 1)
P = JT;k(s,t) €Ny, k=1,..,n (4.11)
into (4.8). To determine the values {p, (v ;)}, force the equation resulting from the
substitution to be true at the collocation nodes {vy, ..., v,y }. This leads to the linear

system

- cos 0y,
pn(v W;;Pn Uk /|vz mkst
|(Dsmy, X Dymy)(s,t)|do = f(v;), i=1,...,nf, (4.12)
which we write abstractly as
(Z = PuK)pn = Puf (4.13)
which will be compared to (4.9). We have the following result.
Theorem 4.2.1 Let S be a C? surface that satisfies (3.41) and (3.42) with F; €
C™2. Then for all sufficiently large n, say n > ng, the operators T — P,K are
invertible on L*®(S) and have uniformly bounded inverses. For the solution p of (4.9)
and the solution p, of (4.13)
lp = pallae <@ =Puk) 7 - llo = Praplloc, 7> mo (4.14)
Furthermore, if f € C"™(S), then
10 = pull, = O™, 1 >ng (4.15)
Proof: The result follows from the standard theory for projection methods (see, for

example, Atkinson[l, pp. 50-62]). Since S is smooth, it is known that I : L>®(S) —

C(S) and is compact. We then have

(Z —P,)K|| — 0asn — oo (4.16)
From (4.16) we have the standard result that since (Z—K) ! exists, then (Z — P,K) !

exists and is uniformly bounded for sufficiently large n, say n > ny.
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Combining (4.9) and (4.13) we have (4.14). The bound (4.15) follows from
(4.14) and from the fact that we are using interpolation of degree r.

O

As described for the radiosity equation, superconvergent methods can be de-
veloped. Next, we want to explore in more detail the collocation method based on
piecewise constant interpolation (the centroid method) and show that it is supercon-
vergent at the collocation points. Define the operator P,, by

Pog(P)=g(Py), Pe Ay, k=1,..,n (4.17)

for g € C(S). Then, P, is a bounded operator on C(S) with ||P,| = 1. Define a
collocation method with (4.17). Substitute

pn(P) = pu(Py), P =my(s,t) € Ap, k=1,...,n (4.18)

into (4.8). To determine the values {p,(P)}, force the equation resulting from the

substitution to be true at the collocation nodes {P; | k = 1,...,n}. This leads to the

linear system

1 & cos Op
(F) 27r,€2::1 (F) ! |Py — mi(s, t)|°
|(Dsmy. X Dymy) (s,t)| do= f(Pg),i=1,...,n (4.19)
which can be rewritten abstractly as
(Z+P.K)pn="Pnf (4.20)

which will be compared to (4.9).
By Theorem 4.2.1, for the true solution p of (4.9) and the solution p, of the
collocation equation (4.20), we have
10 = palloe = O(R), 1 > ng (4.21)

For g € C(0), consider the interpolation formula (4.17), which has degree of precision
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0. Integrating it over o, we obtain
[g(s,t) do ~ ZﬁTg(s,t) do — %g (% %) (4.22)
which has degree of precision 1.
For 7 C IR?, a planar triangle with vertices {v1, vy, v3}, define the mapping m.,
as in (2.37). Then for a function g € C(7), the function
Lrg(z,y) =g <mT <%, %)) = g(P;) (4.23)

1
—) = P; (the centroid of

is a constant polynomial interpolating g at the node m.; 373

7). We have the following.
Lemma 4.2.2 Let 7 be a planar right triangle and assume the two sides which form
the right angle have length h. Let g € C*(7). Let ® € L'(7) be differentiable with the

first derivatives D, ®, D,® € L*(7). Then

/@(a:,y) (T — L) g(z,y) dr /(|q>| +|D®)) dT] -max {|Dgl,|D?|g}

T

< ch?

(4.24)
Proof: The proofis very similar to the proof of Lemma 3.1.1. Let £ =7 — L.
We can find polynomials po(z,y), pi(z,y) of degrees 0 and 1, respectively, and a
constant ®, such that
lg = poll < chl|D'®@[|so, llg = pilloe < h?|D?glloc, |® — Rol, < chl| D[y (4.25)
From the first two inequalities in (4.25), it follows that
1 = polloe < ch (]| D?glloc + (| Dgllo) (4.26)
We can write
/qm;g - /M;(g —p1) dr+ / (® — @) L.py dr (4.27)
Since formula (4.T17) has deg;ee of precision 0, it follows that
Lipo=0 (4.28)

Also, by the fact that formula (4.22) has degree of precision 1, the term
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/ OoL.py dr =0 (4.29)
Using (4.28) we can write '
Lipr = L7.(p1 — po) (4.30)
Taking bounds and using (4.26)
12,p1ll < ch (A D*gllo0 + [ Dgllc) (4.31)

Using (4.31) and the third inequality in (4.25), we obtain

/ (® — @) Llpy dr

For the first integral in (4.27), using (4.25) we have the bound

/q’ﬁi(g —p1) dT‘ < ch? /|@| dr
Combining (4.32), and (4.33), we have (4.24).

< ch? [/|<1>|+ DD dT] -max {||Dglloc, |D%glloc} ~ (4.32)

1D%gllo (4.33)

|

As in Section 3.1 (following Lemma 3.1.1), this result can be extended to general

triangles, provided

sup lAg,lkae}%z r(Apg)| < o0 (4.34)
where
g 4-
") = (4.35)

with h(7) and h*(7) denoting the diameter of 7 and the radius of the circle inscribed
in 7, respectively.

Corollary 4.2.3 Let 7 be a planar triangle of diameter h, let g € C*(7), and let
® € L'(7) with both first derivatives in L' (7). Then

[ @@ )@~ L)g(.v)

< et | [ (@] +|Dpa)) dr

T

max {[|Dg] oo, [ D9l } (4.36)
where ¢ (r(7)) is some multiple of r(7) of (4.35).
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Since formula (4.22) has degree of precision 1 (odd) over o, extending it to a
square would not improve the degree of precision, which means the same error bound
as in Lemma 4.2.2 is true for a parallelogram formed by two symmetric triangles.

We want to apply the above results to the individual subintegrals in

1 & cosp
Kg(P) = — g m(s,t
g( ) 27_‘_]9:10- |Pk_mk(s,t)|2p( k( ))
|(Dsmy. x Dymy) (s,t)| do (4.37)

with the role of g played by p(mg(s,t)) |[(Dsmyg x Dymy) (s,t)|, and the role of ®
cos Op,

|Pk_mk(57t)| .

Theorem 4.2.4 Let i be an integer and S be a smooth C'™' surface. Then

played by 5. For the derivatives of this last function, we have

P=aP)| = P-ar

with ¢ a generic constant independent of P and Q).

‘D?g ( cosOr >‘ <= P#Q (4.38)

Proof: The proof uses
|cosOp| < ¢|P — Q)| (4.39)

and the same type of argument that was used to prove Theorem 3.3.5.

For the error at the collocation node points, we have the following.
Theorem 4.2.5 Assume the hypotheses of Theorem 4.2.1, with each F; € C?. As-
sume p € C?. Assume the triangulation T, of S satisfies (4.34) and is symmetric.
For those integrals in (4.87) for which P; € Ay, assume that all such integrals are
evaluated with an error of O(h*). Then

max [p(R)  pu(P)| < b logh (4.40)

Proof: As in the proof of 3.1.3, we will bound
max [IC(Z —P,)u(v;))]

1<i<n
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For a given node point v;, denote A* the triangle containing it and denote:
T, =Ty —{A"}
By our assumption, the error in evaluating the integral of (4.37) over A* will be
O(h?).

Partition 7* into parallelograms to the maximum extent possible. Denote by
T the set of all triangles making up such parallelograms and let 7,%) contain the
remaining triangles. Then

T =TOUTE.
It is easy to show that the number of triangles in 7. is O(n) = O(h~?), and the
number of triangles in 7, is O(y/n) = O(h™).

It can be shown that all but a finite number of the triangles in 7,(%, bounded
independent of n, will be at a minimum distance from v;. That means that the
triangles in 7, are “far enough” from v;, so that the function G (v;, Q) is uniformly
bounded for @ being in a triangle in 7,(?) (where we denote by G (P, Q) = %).

First, consider the contribution to the error coming from the triangles in 7,?.
By Lemma 4.2.2 the error over each such triangle is O (h%||D?¢||), since the area of
each triangle is O(h?) and using our earlier observation. Having O(h ') such triangles
in 7., the total error coming from triangles in 7,? is O (h3||D?g]| ).

Next, consider the contribution to the error coming from triangles in 7,("). By
Lemma 4.2.2, the error will be of size O(h?) multiplied times the integral over each

such parallelogram of the maximum of the first derivatives of G/(v;, Q) with respect

to (). Combining these we will have a bound

ch? / (1G] + |DG]) dSq (4.41)
S—A*
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By Theorem 4.2.4, the quantity in (4.41) is bounded by

, 1 1
ch / QP—QWWP—m»d% (4.42)

SA
Using a local representation of the surface and then using polar coordinates,

the expression in (4.42) is of order
ch? (h +logh)
Thus, the error arising from the triangles in 7,(!) is O(h?log h). Combining the error

arising from the integrals over A*, 7, and 7, we have (4.40).

Numerical Examples. As a smooth surface consider the ellipsoid

) () () - o

with (a,b,c) = (1,1,1) (the surface E1), and (a,b,c) = (2,3,5) (the surface E2)
We solve the equation (4.1) with the function f(P) so chosen that the true solution

1s
1
= 4.44
“ VaZ 4+ y? + 22 ( )

In Tables 4 and 5 we give

|u(P) — un(P)] (4.45)
_ (i b o
ERRANVEIRVERVE

7y = 2, and 73 = 10 (points situated further and further away from the boundary

where P = P;; ) € D.(E;) (the exterior of E;), where 7 = 1.1,
of the ellipsoid). The results are consistent with a convergence rate of O(h*logh)
predicted by Theorem 4.2.5 which illustrates the superconvergence.

As a simple piecewise smooth surface, we use again the unit cube

S =10,1] x [0,1] x [0, 1] (4.46)
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P=p, P =Py P =Py
n | |u(P) — u,(P)| | Ratio | |u(P) — u,(P)| | Ratio | |u(P) — u,(P)| | Ratio
4 8.52 E-1 5.05 E-1 1.02 E-1
16 9.29 E-2 9.16 6.05 E-2 8.35 1.20 E-2 8.53
64 1.10 E-2 8.44 8.32 E-3 7.27 1.63 E-3 7.36
256 2.67 E-3 4.12 1.88 E-3 4.40 3.71 E-4 4.39
Table 4: Errors in solving the Neumann Problem on E1
P =Py P =Py P =Py
n | |u(P) — u,(P)| | Ratio | |u(P) — u,(P)| | Ratio | |u(P) — u,(P)| | Ratio
4 2.87 E-1 1.56 E-1 2.70 E-2
16 5.94 E-2 4.84 2.91 E-2 5.36 5.09 E-3 5.30
64 1.24 E-2 4.77 5.85 E-3 4.98 9.99 E-4 5.10
256 3.02 E-3 4.12 1.29 E-3 4.53 2.07 E-4 4.82
Table 5: Errors in solving the Neumann Problem on E?2
The function f is chosen so that the true solution is
v ! (4.47)

V(@ =052+ (y —0.5)2 + (2 — 0.5)’
In Table 6 we give the results for |u(P) — u,(P)| for P = P, = (1,7, 7) € D.(S),

1 = 1,2,3. The ratios approach 2 as n increases, which is consistent with a rate

of convergence of O(h) as predicted by Theorem 4.2.1 (with » = 0). As shown in

the table, the further away from the boundary of S the point P is, the better the

approximation.

We conclude this chapter by noting that the ideas used in this section to study
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P=p P =P, P =P
n | |u(P) — u,(P)| | Ratio | |u(P) — u,(P)| | Ratio | |u(P) — u,(P)| | Ratio
12 8.98 E-1 2.92 E-1 3.62 E-2
48 4.11 E-1 2.17 9.18 E-2 3.18 3.01 E-3 12.01
192 1.96 E-1 2.02 3.61 E-2 2.54 3.61 E-4 8.33
768 9.89 E-2 1.98 1.68 E-2 2.14 1.18 E-4 3.05

Table 6: Errors in solving the Neumann Problem on the unit cube

the numerical solution of the exterior Neumann problem (4.1) apply very well to
studying the numerical solutions of the interior Neumann problem and the (interior
or exterior) Dirichlet problem as well. For the interior Neumann problem (analogous
to (4.1), only with D instead of D,), an auxiliary condition on f(P) is needed for
solvability (namely, /5 f(Q) dS = 0). Also, this problem does not have a unique
solution in the sense that two solutions differ by a constant, and the integral equation
corresponding to (4.8) is no longer uniquely solvable.
The interior Dirichlet problem is defined as follows. Find v € C'(D) N C?(D)

that satisfies

Au(P)=0, PeD

uw(P)=f(P), PeS (4.48)
with f € C'(S) a given boundary function. The approach is similar to the one used

to solve (4.1). Represent the solution of (4.48) as a double layer potential

9, 1
uu4:/WQ——k———]%,A€D 4.49
4= [ V@5 || 25 (4.49)
and determine the density function ¥ by imposing the boundary condition in (4.48)
1 cos
WP——/W 8945, = f(P), PeS 4.50
(P) =7 [ Q- (52 dSa=1(P). P (450)
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See Atkinson[4, Ch. 9], for details.

The equation (4.50) is similar to equation (4.8). But, the interest in solving
it using collocation methods with only interior collocation points is not so great in
this case, since the kernel does not involve the normal np, but the normal ng. The
exterior Dirichlet problem (defined analogously with (4.48), only with D, instead of
D) can be transformed into an interior Dirichlet problem using a Kelvin transform

(see Atkinson[4, pp. 400-402]).
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CHAPTER V

CONCLUSIONS

This paper investigates collocation methods for the solution of Fredholm integral

equations of the second kind

u(P)— [u(QK(P,Q) dSq=f(P), P€S (5.1)
S
In particular, we are interested in the radiosity equation
P
up) -2 [w@er. v aso=ep). Pes (2
and in the integral equation reformulation of the exterior Neumann problem
cos Op
dSqg = f(P), PeS 5.3
/ A= g @S = S(P) (5.3)

Collocation methods based on piecewise polynomial interpolation for the nu-
merical solution of (5.1) have been studied extensively, especially piecewise linear
methods (with the collocation nodes being the three vertices of each triangle; see
Atkinson[4, Section 3.2]) and piecewise quadratic collocation methods (with the six
collocation node points being the vertices and midpoints of the sides of each trian-
gle; see Atkinson and Chien[6]). We considered (following the ideas in Atkinson and
Chandler[5]) only collocation methods for which the collocation nodes are interior
to each triangular face. We did so to avoid the difficult task of evaluating the unit
normal to a surface that is not smooth at points located on an edge or at a corner.
Also, in choosing the collocation nodes this way, we cannot have collocation points
which are common to more that one triangle (in which case, again, there would be
problems in defining the normal at such points).

We described in Chapter 1T a procedure for obtaining a numerical method
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of any desired order. Using interpolation of the solution of degree r at the f, =

(r+1)(r+2)
2

If we use symmetric triangulations or particular choices of the parameter o (used in

interior nodes defined in (2.4), we obtain an error of order O(h1).

defining the collocation nodes (2.4)), we might improve the rate of convergence.

We want to have collocation node points that are interior to each triangle and
symmetrically placed inside each triangle. The set of nodes in (2.4) is not the only
possible choice. We defined them that way because using that pattern it is possible
to define interpolation of any degree r. But, in applications we rarely consider in-
terpolation of degree higher that 2. One other way of choosing 6 interpolation (and
collocation) nodes would be the following: Consider two constants 0 < «a, 3 < 2’
a # (3 and define

¢ = (a,a), ¢ = (o, 1 — 2c0), 3 = (1 — 20, @)
a1 =(8,8), ¢s = (6,1 = 28), g6 = (1 — 28, B) (5.4)
which is actually a generalization of the nodes for quadratic interpolation considered
in (2.11) and (2.15) (letting § = 1—Toz, we obtain the nodes in (2.11) and (2.15)). A
quadrature formula derived based on quadratic interpolation at the nodes (5.4) has
degree of precision 2 for any 0 < «, § < %, and degree of precision 4 for o = g =
0.103583 and = [y = 0.448208. Also, for these values, if the integration is done
over symmetric triangles, the degree of precision is 5.
Another set of interpolation nodes for the quadratic case could be
¢ =(0), = (a,7), s = (6,0), = (6,7), s = (v,0), g6 = (1, 8)  (5.9)
for constants 0 < «, 3,7 < %, 0<a+p,a+v B+~ < 1. The definition of the
six basis functions [y, ..., s and the computation of the norm ||P,]|| of the correspond-
ing interpolation polynomial would be significantly more difficult, but having more

“degrees of freedom” in choosing values for «, § (and v in (5.5)) may lead to higher
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degrees of precision of the approximation. For the cubic interpolation case, one might

consider the set of nodes in (5.4) and

11
33
In Chapter III we used piecewise quadratic collocation methods for finding the

g =(77), a8 = (7,1 =27), ¢ = (1= 27,7), qu0 = ( (5.6)
numerical solution of the radiosity equation (5.2). Under certain smoothness assump-
tions the equation (5.2) is uniquely solvable for each function E. We proved that in
this case, the rate of convergence is O(h?®). At the collocation node points, we ob-
tained superconvergence, O(h*) when we used only a symmetric triangulation, and
O(h®) when in addition to the symmetry we considered a certain value for the pa-
rameter «, which increased the degree of precision of the quadrature formula derived
from the interpolation formula. The error analysis is based on the collocation solution
and it uses the space L>(S), requiring P, to be a projection operator.

We also described procedures for obtaining superconvergent collocation methods
using interpolation of higher degree. For the case of cubic interpolation with a special
value for the parameter o we obtained a rate of convergence of O(h%logh). To obtain
superconvergent methods based on interpolation of the solution of degree r, we must
consider separately the cases of r being an odd or an even number. If r is even , we can
obtain superconvergence, O(h"*?), by simply considering symmetric triangulations of
the surface S. Superconvergent methods with r being odd are more difficult to obtain,
since they require the existence of a number «y for which the quadrature formula has
degree of precision r+ 1. The value of such an « is determined by solving a system of
equations in only one variable, and that system may not have any solution. However,
if such an «ay exists, then the rate of convergence of the collocation method is proven
to be O(h™3logh). For the numerical examples in Section 3.3 in implementing the

method, we used the boundary element package described in Atkinson|3].
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We only considered the simplest of cases, that of unoccluded surfaces (V = 1).
For computer graphics applications the more interesting case is that of occluded
surfaces. In this case there are problems along the “lines of discontinuity” of V' in
dealing with the integrals over triangles Ay where V (v;, Q) = 1 is not true for v; € Ay.
In Atkinson and Chien[7] the authors describe a way of solving this problem in the
case of piecewise constant interpolation. Unfortunately, for higher order methods this
approach is not good enough.

Also, the surfaces considered are smooth. However, in most applications, the
surfaces are likely to be only piecewise smooth. In this case the radiosity kernel is less
well-behaved than for the smooth case, being no longer compact. We do not obtain
superconvergence anymore, as the examples in Section 3.3 show.

Another factor that might slow down the speed of convergence is the approxi-
mation of the surface S. If the boundary S is curved rather than polyhedral, then it
is convenient to approximate S by interpolation, obtaining an approximate bound-
ary S (see Atkinson and Chien[6] or Atkinson[4, Sections 9.3.1 and 5.3.3] ). The
interpolatory surface is then used in the approximate calculation of the Jacobian
|(Dgmy, x Dymy(s,t)| and the approximate calculation of the unit normals np and
ng. In the boundary element package Atkinson[3]|, we use a quadratic interpolation
of a curved surface. The decrease in the rate of convergence due to interpolation of
the surface was not shown in our examples in Section 3.3, since for both surfaces the
approximation was exact.

In Chapter IV we use a piecewise polynomial collocation method for the numer-

ical solution of equation (5.3). Equation (5.3) arises in solving the exterior Neumann
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problem. Representing the solution of the Neumann problem as a single layer poten-
tial (which is always harmonic)

u(A) = / Q) s aen, (5.7)

| TA-q]

the density function p must satisfy equation (5.3). Since the kernels of equations (5.2)
and (5.3) are similar, the approaches used in finding numerical solutions for (5.2) ap-
ply very well to (5.3). Collocation methods with nodes interior to the triangles (and
surface) are especially useful for equation (5.2), since in evaluating the kernel at the
collocation points, there are problems with the normal np at either points common
to more that one triangular face, or at points that are on a corner or edge of the
surface S. In Section 4.2 we describe and give an error analysis for such colloca-
tion methods based on interpolation of the solution at the interior collocation nodes
(2.4). Numerical examples are given for the case of piecewise constant interpolation
(the centroid rule) of the solution. The examples illustrate the superconvergence (
O(h?logh)) of the centroid rule in the case of a smooth surface (the ellipsoid). For
the case of piecewise smooth surface (the unit cube), the rate of convergence obtained
is only O(h), the method being no longer superconvergent.

The ideas described in this chapter apply well to studying the numerical solu-
tions of the interior Neumann problem and the (interior or exterior) Dirichlet Prob-
lem as well. For the interior Neumann problem (analogous to the exterior Neumann
problem, only with D instead of D,), an auxiliary condition on f(P) is needed for
solvability (namely, /5 f(Q) dS = 0). Also, this problem does not have a unique
solution in the sense that two solutions differ by a constant.

In this work we studied in detail only the case of piecewise constant interpolation
of the solution for the Neumann problem. But, as we did in Chapter III for the

radiosity equation, superconvergent collocation methods based on interpolation of



higher degree can be developed for equation (5.3).
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