
Solving Fredholm Integral Equations of the
Second Kind inMatlab

K. E. Atkinson�

Dept of Mathematics
University of Iowa

L. F. Shampiney

Dept of Mathematics
Southern Methodist University

May 5, 2007

Abstract

We present here the algorithms and user interface of a Matlab pro-
gram, Fie, that solves numerically Fredholm integral equations of the
second kind on an interval [a; b] to a speci�ed, modest accuracy. The ker-
nel function K(s; t) is to be moderately smooth on [a; b] � [a; b] except
possibly across the diagonal s = t. If the interval is �nite, Fie provides
for kernel functions that behave in a variety of ways across the diagonal,
viz. K(s; t) may be smooth, have a discontinuity in a low-order derivative,
have a logarithmic singularity, or have an algebraic singularity. Fie also
solves a large class of integral equations with moderately smooth kernel
function on [0;1).

ACM Categories and Subject Descriptors: G.1.9 [Numerical Analysis]:
Integral Equations
General Terms: Algorithms
Additional Keywords and Phrases: numerical solution, Matlab

1 Introduction

We present here the algorithms and user interface of a Matlab program, Fie,
for the numerical solution of integral equations of the form

�x(s)�
Z b

a

K(s; t)x(t) dt = f(s); a � s � b (1)

which we write symbolically as (��K)x = f . Fie is a successor of the FOR-
TRAN program IESIMP in [3] that extends greatly the range of problems that

�Dept. of Mathematics, University of Iowa, Iowa City, IA 52242.
Email: atkinson@math.uiowa.edu

yDept. of Mathematics, Southern Methodist University, Dallas, TX 75275.
Email: lshampin@mail.smu.edu

1



can be treated. Despite the additional capabilities in Fie, we have been able to
exploit theMatlab [12] problem solving environment (PSE) to make it notably
easier to use than IESIMP.
The Fie program solves integral equations with kernel functions that are

moderately smooth on R = [a; b] � [a; b], except possibly across the diagonal
s = t. When the interval is �nite, we assume that the equation has a unique
solution for any continuous f(s). Fie provides for kernels with the following
kinds of behavior across the diagonal:

� Smooth K(s; t) is moderately smooth on all of R. Fie uses Simpson�s
rule to discretize the equation and the natural interpolant of Nyström to
get an approximate solution on all of [a; b]. This case is discussed in §3.
We remark that this is the class of kernels and the approach taken in
IESIMP.

� DiscontinuousK(s; t) has a discontinuity in a low-order derivative across
the diagonal. Fie uses a variant of Simpson�s rule that accounts for the
discontinuity and so achieves the same rate of convergence as Simpson�s
rule applied to a smooth kernel. This case is discussed in §4.

� Logarithmic Singularity K(s; t) = L(s; t) log js�tj for a function L(s; t)
that is moderately smooth on all of R. Fie uses product integration to
account for the singular behavior across the diagonal. In addition it uses
a graded mesh to deal with a lack of di¤erentiability of the solution at the
ends of the interval. This case is discussed in §5.

� Algebraic Singularity K(s; t) = L(s; t)=js � tj� for a function L(s; t)
that is moderately smooth on all of R and 0 < � < 1. As in the case of
a logarithmic singularity, Fie uses product integration to account for the
singular behavior across the diagonal and a graded mesh to deal with a
lack of di¤erentiability of the solution at the ends of the interval. This
case is discussed in §6.

Fie also solves problems set on in�nite intervals, but only the interval [0;1).
In this case we assume that there is a unique solution for all f(s) that are
bounded as well as continuous. Fie requires that the kernel is moderately
smooth on all of R and the integral operator is compact on a suitable function
space. It solves a problem of this kind by �rst transforming the equation to one
posed on [0; 1]. A two-point Gaussian formula is used instead of Simpson�s rule
to avoid evaluating the kernel at in�nity. This case is discussed in §??.
The Guide to Available Mathematical Software [9] lists only four programs

for the solution of Fredholm integral equations. Two are the FORTRAN pro-
grams IESIMP and IEGAUS of [3] that solve equations with smooth kernels.
The NAG FORTRAN library [14] has a program D05AAF for the solution of
problems with kernels that are discontinuous like those of §4 and a modi�cation
of this program called D05ABF that solves equations with smooth kernels. All
four of these programs are for problems on �nite intervals.

2



We discuss our implementation of Fie in §2, including a discussion of the
important capabilities of Matlab that we use. Along with the solver itself, we
have written a collection of test programs that show how to use the solver and
illustrate its performance. In each of the sections where we discuss a problem
class, we take up two examples from the corresponding test program. Section 2
includes a URL for all these programs and a note about the applicable versions
of Matlab.

2 Implementation

Matlab has capabilities that we exploit to simplify the user interface of the
solver Fie. In this section we discuss some aspects of the design of the code.
Problem solving environments make it easy to formulate problems, solve them
numerically, and interpret results graphically. The price of this convenience
is speed. For this reason we give some attention to e¢ cient computation in
the PSE. The environment makes modest accuracy natural, which led us to
implement numerical methods of relatively low order.
A call to Fie has the form

[sol,errest,cond] = Fie(lambda,a,b,behavior,kernel,RHS,...
AbsTol,RelTol)

With the exception of behavior, the �rst six input arguments provide a
straightforward description of the integral equation (1). The kernel K(s; t)
must be moderately smooth on all of R = [a; b] � [a; b] except possibly for the
diagonal s = t. When the interval is �nite, the input variable behavior tells
the solver how the kernel behaves across the diagonal. The possibilities are

� 1 K(s; t) is smooth.

� 2 K(s; t) is discontinuous in a low-order derivative.

� 3 K(s; t) = L(s; t) log js� tj.

� alpha K(s; t) = L(s; t)=js� tj� for 0 < � < 1.

The interval [0;1) is speci�ed in a natural way, namely by a = 0 and b =
Inf, which is the way that Matlab represents in�nity. The PSE has a built-in
function that Fie uses to test whether b is in�nite. When the interval is in�nite,
the kernel must be smooth across the diagonal, so the input value of behavior
is ignored.
Vectorization is very important to e¢ ciency in Matlab, so we require that

the functions de�ning the equation be coded to accept array arguments and
return arrays. The argument RHS is the handle of a function that is to accept
a column vector s and return a column vector of values f(s). The argument
kernel is the handle of a function that is to evaluate L(s; t) if behavior is 3 or
alpha and otherwise, K(s; t). In either case the function is to accept matrices
s and t de�ning a grid and return a matrix of corresponding function values.

3



The optional input arguments AbsTol and RelTol are absolute and relative
error tolerances, respectively. Fie tries to �nd a solution z that approximates
the true solution x on a set of nodes in [a; b] so that

jjx� zjj1 � atol + rtol jjzjj1

Here atol = max(AbsTol; 0) and rtol = max(RelTol; 100 eps) are used to deal
with improper or unreasonable values of AbsTol and RelTol. (The quantity eps
is the unit roundo¤ inMatlab.) It is intended that Fie solve integral equations
to modest accuracy, so the default values for the tolerances are AbsTol = 1e-6
and RelTol = 1e-3. The approximation to jjx � zjj1 that is used in this test
is available as the optional output argument errest.
The PSE provides for a complex data structure that Fie uses for the output

argument sol. The program computes the approximate solution on a set of
nodes in [a; b], but these values determine an approximate solution that is accu-
rate throughout the interval [a; b], namely the natural interpolant of Nyström.
It is evaluated conveniently at an array of points sint by a call to ntrpFie of
the form

xint = ntrpFie(sol,sint)

This interpolant requires information about the problem such as lambda and
handles for the functions kernel and RHS. All this information is placed in the
solution structure sol by Fie, making it very easy for a user to evaluate the
interpolant. The nodes and the solution at the nodes are available as the �elds
sol.s and sol.x, but it is so easy to use ntrpFie that there is little reason to
access these values directly.
Some of the capabilities of Matlab make Fie easier to use and the coding

much simpler than IESIMP. We have already discussed the use of complex data
structures to facilitate evaluation of the numerical solution. Another capability
is automatic and dynamic allocation of storage. Array operations not only
simplify and clarify the coding, but some actually reduce the run time because
they are executed as compiled code rather than the usual interpreted code of
the PSE. It was necessary to supply IESIMP with auxiliary functions such as
a linear equation solver that are already present in the PSE. Like many of the
built-in functions, the linear equation solver of Matlab is executed as compiled
code with a corresponding reduction in run time.
Fie is not intended for eigenvalue problems and no special provision is made

for values of � that are close to eigenvalues. The program approximates the
integral equation by a system of linear equations Az = c where the components
of c are values of f(s) and the components of z are approximations to x(s) at
certain nodes in [a; b]. The optional output argument cond is an inexpensive
estimate of the condition of A computed with a built-in function. It provides a
way of recognizing the ill-conditioning of the integral equation that results from
a � that is close to an eigenvalue.
Along with the programs for solving Fredholm integral equations of the sec-

ond kind, we also provide a collection of test programs, one for each kind of

4



behavior allowed. They illustrate the use of Fie and ntrpFie and show how
well they perform. Each will be discussed below in context, but we note here
that each begins with comments explaining the use of the program and an exam-
ple call. The program TestAll collects these example calls and so runs through
all the possibilities. Each test program allows the user to specify not just a
problem, but also values of � and [a; b]. In some cases, the problem depends on
a parameter c that the user can choose. The test program displays the com-
puted solution and reports cond, an estimate of the condition of the problem, as
well as several measures of error. One is errest, an estimate of the maximum
absolute error at nodes. The true error at the nodes is determined and reported
for comparison with the estimate. To assess the error of the interpolant, the
solution is evaluated at 150 points in the interval and the maximum true error
at these points is reported.
Fie and ntrpFie make use of nested functions, a feature that was added to

Matlab at version 7.0 (May 2004). All the programs are available at

www.math.uiowa.edu/ftp/atkinson/Fie.package/

3 Smooth Kernel

We begin with the approximation of the integral operator

Kx(s) =
Z b

a

K(s; t)x(t) dt; a � s � b (2)

when the kernel K(s; t) is smooth. The numerical method that we describe and
implement converges when K is just continuous, but it works best when K(s; t)
is at least three times continuously di¤erentiable. A standard approach is to
discretize the integral with a quadrature schemeZ b

a

g(t) dt �
nX
j=0

wj;ng (tj;n)

for a sequence of values of n ! 1. The quadrature points ftj;n j j = 0; : : : ; ng
are contained in the interval [a; b]. For smooth kernels we use the compos-
ite Simpson�s rule for an even integer n. Using these nodes and weights, we
approximate Kx(s) by

Knx(s) �
nX
j=0

wj;nK(s; tj;n)x (tj;n) ; a � s � b (3)

and then approximate (��K)x = f by

�xn(s)�
nX
j=0

wj;nK(s; tj;n)xn (tj;n) = f(s); a � s � b (4)

5



or more abstractly, (��Kn)xn = f . This is solved by �rst �nding the values of
xn at the nodes ftj;ng. Collocating (4) at the nodes leads to the linear system

�xn(ti;n)�
nX
j=0

wj;nK(ti;n; tj;n)xn (tj;n) = f(ti;n); i = 0; 1; : : : ; n (5)

After solving this system, the general solution to (4) can be obtained at all other
points s 2 [a; b] by solving (4) to get the Nyström interpolation formula,

xn(s) =
1

�

24f(s) + nX
j=0

wj;nK(s; tj;n)xn (tj;n)

35 ; a � s � b (6)

A complete presentation of the Nyström method, including an analysis of
its error is given in [4, §4.1]. It is found that for all su¢ ciently large n, the
approximating equation (4) has a unique solution and there is a constant c > 0
such that

kx� xnk1 � c kKx�Knxk1 (7)

The quantity on the right here is the error of the approximation (3).
The scheme outlined above and using Simpson�s rule is implemented in the

FORTRAN program IESIMP [2, §5.1] and [3], and it is used in the Matlab
program Fie. If K(s; t) is continuous on [a; b] � [a; b], then for all su¢ ciently
large values of n the equation (4) has a unique solution xn. Moreover, we �nd
with Simpson�s rule that if K(s; �)x 2 C4 [a; b] for a � s � b, the bound (7)
implies

kx� xnk1 = O
�
n�4

�
(8)

The new program Fie begins with n = 8 and doubles n until a solution xn
is found with su¢ cient accuracy or an upper limit of 512 is reached. It predicts
the error assuming a geometric behavior

kx� xnk1 = O
�
n�p

�
(9)

for some p � 1. As seen in (8), for moderately smooth kernel functions this will
be true with p = 4. Using three successive values of n; say

n1; n2 = 2n1; n3 = 2n2

we can estimate p using

2�p � kxn3 � xn2k1
kxn2 � xn1k1

� ratio (10)

With this we have the standard estimate

kx� xn3k1 � ratio

1� ratio kxn3 � xn2k1 (11)

6



The reliability of the estimate is enhanced by restricting the value of ratio so
that

1

16
� ratio � 1

2
(12)

The lower value here is consistent with (8).
The TestSmooth program has eight test problems with smooth kernels.

There are more possibilities than is apparent because as explained in §2, the
�nite interval and the parameter � are to be speci�ed. Furthermore, some
problems are families depending on a parameter c that is also to be speci�ed.
Depending on the problem, there may be restrictions on the values allowed for
these variables. Two of the test problems will illustrate the possibilities and
the performance of the solver for problems with smooth kernels. Note that the
numbering of problems, both here and in the following sections, is taken from
the problem index of the corresponding test program.
Problem 4 This is a standard test problem with the Runge kernel. It arises in
electrostatics [11] where it is called Love�s equation. The kernel function has a
peak along s = t when the positive parameter c is small. The equation is

�x(s)�
Z 1

0

c x(t)

c2 + (s� t)2 dt = f(s); 0 � s � 1 (13)

with f(s) de�ned so that x(s) = 0:06 � 0:8s + s2. For the numerical results
reported here, c = 0:1 and � = �0:5. It is seen in Table 1 that errest is a close
bound on the actual error at the nodes and the accuracy of the solution at the
nodes is preserved throughout the interval by the Nyström interpolant. As a
side note, this kernel function approaches a singular function as c decreases to
0, and thus a larger value of n is needed in order to approximate the integral
accurately. The norm of the integral operator is, however, always bounded by
� when considered as a linear operator on C [0; 1] into C [0; 1].
Problem 8 This example in [13, Chap. 4] is a boundary integral equation for
a plane interior Dirichlet problem for an ellipse. For f(s) = 25� 16 sin2(s) the
equation

x(s) +
1

�

Z �

��

0:3x(t)

1� 0:64 cos2
�
1
2 (s+ t)

� dt = f(s); �� � s � � (14)

has the solution x(s) = 17
2 +

128
17 cos (2s). Because of periodicity, Simpson�s

rule converges faster than the assumed geometric rate (9). A consequence seen
in Table 1 is that errest is a bound on the error at nodes, but it is quite
pessimistic. Even with exceptionally accurate solution values at the nodes,
the Nyström interpolant provides an equally accurate solution throughout the
interval.

4 Discontinuous Kernel

In this section we consider kernels that are moderately smooth on all of [a; b]�
[a; b] except for a discontinuity in a low order derivative across the diagonal

7



Table 1: TestSmooth with default tolerances.

Error at Nodes
Problem Final n cond Interpolation Error errest true

#4 64 16 6.6e-6 1.1e-5 6.6e-6
#8 32 4 1.1e-8 4.9e-5 1.1e-8

s = t, a behavior typical of Green�s functions. The method developed in §3 is
considerably less satisfactory for such kernels because Simpson�s rule is applied
to subintervals where the integrand is not smooth. The integrand is piecewise
smooth and we know where the lack of smoothness occurs, so we can get ac-
curate approximations by developing an appropriate quadrature formula, an
approach �rst given in Cubillos [6]. Another approach given by El-Gendi [7]
is implemented in the FORTRAN program D05AAF of the NAG library [14].
A modi�cation of this program called D05ABF solves equations with smooth
kernels.
As with Simpson�s rule in §3, we assume that n is an even integer, de�ne

h = (b� a) =n, and work with the nodes tj = a+jh for j = 0; 1; : : : ; n. In stating
the formulas it will be convenient to denote the usual Simpson�s rule applied to
a function g(t) on the interval [�; �] by Sfg; �; �g. We need to approximate

Kx(s) �
Z b

a

K(s; t)x(t) dt =

n�1X
j=1
j odd

Z tj+1

tj�1

K(s; t)x(t) dt (15)

When s is a node tk with k even, we approximate the integrals on the right hand
side of this expression with Simpson�s rule. For any other s, suppose that i is the
odd integer for which ti�1 � s � ti+1 and let ex(t) be the quadratic polynomial
that interpolates x(t) at both ends and the middle of this subinterval. For this
s, we approximate Kx(s) by

Knx(s) �
n�1X
j=1

j odd, j 6=i

SfK(s; �)x; tj�1; tj+1g

+SfK(s; �)ex; ti�1; sg+ SfK(s; �)ex; s; ti+1g
(16)

It is straightforward to show that in this approximation, when s approaches a
node tk with k even,

lim
s!tk

Knx(s) =
n�1X
j=1
j odd

SfK(tk; �)x; tj�1; tj+1g (17)

This tells us that the Knx(s) of (15) is continuous on all of [a; b].

8



The approximation (16) results in a sum of the form

Knx(s) =
nX
j=0

wj(s)x(tj); a � s � b (18)

with weight functions fwj(s)g that are weighted combinations of values of
K(s; �). This leads directly to

�xn(s)�
nX
j=0

wj(s)xn(tj) = f(s); a � s � b (19)

A standard convergence analysis provides the same kind of convergence result
that we obtained in §3 for smooth kernels, namely that if x is su¢ ciently smooth
and the kernel is su¢ ciently smooth except across s = t, then (19) has a solution
for all su¢ ciently large n and

kx� xnk1 = O
�
n�4

�
We calculate xn by solving the linear system

�xn(ti)�
nX
j=0

wj(ti)xn(tj) = f(ti); i = 0; : : : ; n (20)

For even index i, the coe¢ cients fw0(ti); : : : ; wn(ti)g are the usual weights of
Simpson�s rule, as seen in (17). For odd i, we have

Knx(ti) �
n�1X
j=1

j odd, j 6=i

SfK(ti; �)x; tj�1; tj+1g

+SfK(ti; �)ex; ti�1; tig+ SfK(ti; �)ex; ti; ti+1g
(21)

We see from this expression that for j < i � 1 or j > i + 1, the weights wj(ti)
are the usual weights of Simpson�s rule, exactly as for even i. A straightforward
calculation leads to the following expressions for the remaining weights:

wi�1(ti) =
h

6

�
3K(ti; ti�1) +

3

2
K(ti; ti�1=2)�

1

2
K(ti; ti+1=2)

�
wi(ti) =

h

6

�
3K(ti; ti�1=2) + 2K(ti; ti) + 3K(ti; ti+1=2)

�
wi+1(ti) =

h

6

�
�1
2
K(ti; ti�1=2) +

3

2
K(ti; ti+1=2) + 3K(ti; ti+1)

�
For ti�1 � s � ti+1, the Nyström interpolant is

xn(s) =
1

�
[f(s) +

n�1X
j=1

j odd, j 6=i

SfK(s; �)xn; tj�1; tj+1g

+ SfK(s; �)exn; ti�1; sg+ SfK(s; �)exn; s; ti+1g]
9



Here exn is the quadratic polynomial interpolating xn at the nodes ti�1; ti; ti+1,
namely

exn(s) = xn(ti�1) + ��xn(ti�1) + 1
2
� (�� 1)�2xn(ti�1)

In this expression � is the forward di¤erence operator and � = (s� ti�1)=h.
The TestDiscontinuous program has �ve test problems with kernels that

are discontinuous in a derivative of low order across the diagonal. All the prob-
lems require the interval [0; 1] except for Problem #3, which allows an interval
of the form [0; b]. Problem #4 requires � = 1, but � can be speci�ed for the
other problems. Problem #1 is a family that depends on a parameter c > 0 that
is also to be speci�ed. Two of the test problems will illustrate the possibilities
and the performance of the solver for problems with discontinuous kernels.

Problem 4 This is an example in [8, Chap. 14]. The equation

x(s)�
Z 1

0

js� tjx(t) dt = �(2s3 � 9s+ 2)=6; 0 � s � 1 (22)

has the solution x(s) = s. With this solution and a quadrature scheme that
accounts for the discontinuity in the �rst derivative across s = t, the numer-
ical method of Fie is exact. Accordingly, the errors seen in Table 2 are all
comparable to the unit roundo¤ of 2.2e-16.

Problem 5 This is the example of the NAG documentation for D05AAF [14].
The solution of the equation

x(s)�
Z 1

0

K(s; t)x(t) dt =

�
1� 1

�2

�
sin(�s); 0 � s � 1 (23)

with

K (s; t) =

(
s(1� t); s � t
t(1� s); t � s

(24)

is x(s) = sin(�s). It is seen in Table 2 that errest is a close bound on the actual
error at the nodes and the accuracy of the solution at the nodes is preserved
throughout the interval by the Nyström interpolant.

Table 2: TestDiscontinuous with default tolerances.

Error at Nodes
Problem Final n cond Interpolation Error errest true

#4 32 3 2.2e-16 3.3e-16 6.7e-16
#5 32 1.4 1.7e-07 1.8e-07 1.7e-07

10



5 Logarithmic Singularity

In this section we consider integral equations of the form

�x(s)�
Z b

a

L(s; t) log js� tj x(t) dt = f(s); a � s � b (25)

The function L(s; t) is assumed to be moderately smooth on all of [a; b]� [a; b].
The usual Simpson�s rule will not provide a good approximation for integrands
of this kind, so we use instead a product Simpson�s rule [1], [4, §4.2] that incorpo-
rates the singularity. These integral equations can also be di¢ cult numerically
because the solution x(s) can behave badly near the end points of the interval.
We use a graded mesh to deal with this possibility. We begin by developing a
numerical procedure for L(s; t) � 1 and then extend it to general L(s; t).
In the discretization we consider meshes ft0; : : : ; tng that are graded near

both a and b. We discuss various possibilities for the grading, but in all cases n
is divisible by 4, b� tn�j = tj � a, and

tj =
1

2
(tj�1 + tj+1) ; j odd, j = 1; 3; : : : ; n� 1 (26)

We approximate the integral Kx(s) using a product rule based on quadratic
interpolation. As in the last section, let exj(t) be the quadratic interpolating
x(t) at the nodes ftj�1; tj ; tj+1g. We then have

Kx(s) �
Z b

a

log js� tj x(t) dt =
n�1X
j=1
j odd

Z tj+1

tj�1

log js� tj x(t) dt

�
n�1X
j=1
j odd

Z tj+1

tj�1

log js� tj exj(t) dt
=

nX
k=0

wk(s)x(tk) � Knx(s) (27)

As in the preceding section this approximation leads to

�xn(s)�
nX
k=0

wk(s)xn(tk) = f(s); a � s � b (28)

In familiar fashion we solve this by �rst solving the linear system

�xn(ti)�
nX
k=0

wk(ti)xn(tk) = f(ti); i = 0; 1; : : : ; n (29)

and then solving (28) for xn(s) to get the Nyström interpolant. Below we discuss
evaluation of the integrals in wk(s).

11



An error analysis for this scheme was �rst given in [1] and a more up-to-
date discussion is given in [4, §4.2]. As with the methods discussed earlier, it
is known that for all su¢ ciently large n, equation (28) has a solution and there
is a constant c > 0 for which (7) holds. However, in contrast to the methods
discussed earlier, it is necessary here to use an appropriately graded mesh to
get kx� xnk1 = O (n�p) with p = 3 or larger [4, Thm. 4.2.3]. Accordingly, for
a grading parameter q � 1, we de�ne the nodes of even index by

tj = a+
b� a
2

�
2j

n

�q
;

tn�j = b+ a� tj ; j = 0; 2; 4; : : : ; n=2

(30)

and then de�ne the nodes of odd index by (26). It is known that if q > 3, then
kKx�Knxk1 = O

�
n�3

�
and we get convergence at the same order. Often the

convergence is even faster, so in Fie, we have chosen q = 3 as being su¢ cient
for our purposes.
Computing the weights of (29) involves three kinds of integrals. In stating

the integrals for an odd integer j, we use the fact that hj = tj+1�tj = tj�tj�1.

I1;j =

Z tj+1

tj�1

(t� tj) (t� tj+1)
2h2j

log jt� sj dt

I2;j =

Z tj+1

tj�1

(t� tj�1) (t� tj+1)
�h2j

log jt� sj dt

I3;j =

Z tj+1

tj�1

(t� tj�1) (t� tj)
2h2j

log jt� sj dt

In terms of the auxiliary integrals

Ik(�) =

Z 1

�1
uk log ju� �j du; k = 0; 1; 2 (31)

and
� =

s� tj
hj

(32)

the desired integrals are

I1;j =
1

3
hj log hj +

hj
2
[I2(�)� I1(�)]

I2;j =
4

3
hj log hj + hj [I0(�)� I2(�)] (33)

I3;j =
1

3
hj log hj +

hj
2
[I2(�) + I1(�)]

12



The auxiliary integrals (31) can be evaluated analytically as

I0(�) = (1� �) log j1� �j+ (1 + �) log j1 + �j � 2 (34)

I1(�) = �� +
1

2

�
1� �2

�
log

����1� �1 + �

���� (35)

I2(�) = �
2

9

�
1 + 3�2

�
+
1

3

�
1� �3

�
log j1� �j+ 1

3

�
1 + �3

�
log j1 + �j (36)

These formulas are satisfactory for j�j of moderate size, but for graded meshes,
j�j can be quite large and the formulas then su¤er a loss of signi�cance. To deal
with large j�j, we rewrite (31) as

Ik(�) =

Z 1

�1
uk
�
log j�j+ log

����1� u

�

����� du (37)

and expand log j1� u=�j in a Taylor series. This leads to the following approx-
imations used by Fie for j�j > 10. Each is in error by less than 10�16.

I0(�) � 2 log j�j � 2
�

1

(2� 3)�2 +
1

(4� 5)�4 +
1

(6� 7)�6

+
1

(8� 9)�8 +
1

(10� 11)�10 +
1

(12� 13)�12

� (38)

I1(�) � �2
�

1

(1� 3)� +
1

(3� 5)�3 +
1

(5� 7)�5

+
1

(7� 9)�7 +
1

(9� 11)�9 +
1

(11� 13)�11

� (39)

I2(�) �
2

3
log j�j � 2

�
1

(2� 5)�2 +
1

(4� 7)�4 +
1

(6� 9)�6

+
1

(8� 11)�8 +
1

(10� 13)�10 +
1

(12� 15)�12

� (40)

We now consider what changes are needed to deal with the general equation
(25). The numerical integration operator Knx of (27) is extended in the obvious
way of replacing the function x with L(s; �)x, resulting in the approximation

Knx(s) =
nX
k=0

wk(s)L(s; tk)x(tk); a � s � b (41)

The weights fwk(s)g and the process of computing xn(s) are unchanged. It is
not di¢ cult to extend the theory outlined above for the special case to this more
general situation.
The TestLogSing program has �ve test problems that have kernels of the

form L(s; t) log js � tj with a function L(s; t) that is moderately smooth on all
of [a; b] � [a; b]. The interval can be speci�ed and so can �. Two of the test

13



problems will illustrate the possibilities and the performance of the solver for
problems with logarithmic singularities.

Problem 4 The function f(s) is de�ned so that the integral equation

�x(s)�
Z b

0

t log js� tjx(t) dt = f(s); a � s � b (42)

has the solution x(s) = s2. For the numerical results reported here, b = 2 and
� = 1. It is seen in Table 3 that errest is a close bound on the actual error at
the nodes and the accuracy of the solution at the nodes is preserved throughout
the interval by the Nyström interpolant.

Problem 5 The function f(s) is de�ned so that the integral equation

�x(s)�
Z b

0

log js� tjx(t) dt = f(s); a � s � b (43)

has the solution x(s) = s log(s). For the numerical results reported here, b = 2
and � = 1. It is seen in Table 3 that errest is a close bound on the actual
error at the nodes and the accuracy of the solution at the nodes is preserved
throughout the interval by the Nyström interpolant.

Table 3: TestLogSing with default tolerances.

Error at Nodes
Problem Final n cond Interpolation Error errest true

#4 32 12 3.7e-4 8.3e-4 1.6e-4
#5 32 9 8.3e-5 1.2e-4 3.8e-5

6 Algebraic Singularity

In this section we consider integral equations of the form

�x(s)�
Z b

a

L(s; t)

js� tj� x(t) dt = f(s); a � s � b (44)

The function L(s; t) is assumed to be moderately smooth on all of [a; b]� [a; b]
and 0 < � < 1. The way that we deal with algebraic singularities is so much
like the treatment of logarithmic singularities in §5 that we need only take up
the di¤erences.
We use a graded mesh that has the same form as the one used for logarithmic

singularities, but q = 1= (1:5� �) instead of q = 3. This provides a mesh optimal
for the L2 norm.

14



The equivalent of the auxiliary integrals (31) is

Ik(�) =

Z 1

�1

uk

ju� �j� du; k = 0; 1; 2 (45)

and the analogs of the formulas (33) are

I1;j =
h1��j

2
[I2(�)� I1(�)]

I2;j = h
1��
j [I0(�)� I2(�)] (46)

I3;j =
h1��j

2
[I2(�) + I1(�)]

Analytical evaluation of the auxiliary integrals (45) is somewhat more compli-
cated than (35) because we must consider three cases:

I0(�) =
1

1� �

h
(1� �)1�� � (�1� �)1��

i
; � � �1

=
1

1� �

h
(� + 1)

1�� � (� � 1)1��
i
; � � 1

=
1

1� �

h
(1� �)1�� + (1 + �)1��

i
; �1 � � � 1

(47)

I1(�) =
1

2� �

h
(1� �)2�� � (�1� �)2��

i
+ �I0(�); � � �1

=
1

2� �

h
(� � 1)2�� � (� + 1)2��

i
+ �I0(�); � � 1

=
1

2� �

h
(1� �)2�� � (1 + �)2��

i
+ �I0(�); �1 � � � 1

(48)

I2(�) =
1

3� �

h
(1� �)3�� � (�1� �)3��

i
+2�I1 (�)� �2I0(�); � � �1

=
1

3� �

h
(� + 1)

3�� � (� � 1)3��
i

+2�I1 (�)� �2I0(�); � � 1

=
1

3� �

h
(1� �)3�� + (1 + �)3��

i
+2�I1 (�)� �2I0(�); �1 � � � 1

(49)

These formulas are satisfactory for j�j of moderate size, but for j�j > 10, we
avoid loss of signi�cance by using the truncated Taylor series

I0(�) � j�j��
6X
`=0

�
��
2`

�
2

2`+ 1
��2`

15



I1(�) � � j�j���1
6X
`=0

�
��
2`+ 1

�
2

2`+ 3
��2`

I2(�) � j�j��
6X
`=0

�
��
2`

�
2

2`+ 3
��2`

which have relative errors comparable to the unit roundo¤.
The TestAlgSing program has four test problems that have kernels of the

form L(s; t)=js � tj� with a function L(s; t) that is moderately smooth on all
of [a; b] � [a; b] and 0 < � < 1. All the test problems allow � to be speci�ed
and the �rst two allow � to be speci�ed as well. Two of the test problems will
illustrate the possibilities and the performance of the solver for problems with
algebraic singularities.

Problem 3 The function f(s) is de�ned so that the integral equation

�x(s)�
Z 1

0

x(t)p
js� tj

dt = f(s); 0 � s � 1 (50)

has the solution x(s) = s log(s). This equation with a general f(s) is some-
times called the Kirkwood-Riseman equation. It arises in the study of polymer
hydrodynamics [10]. For the numerical results reported here, � = 5. It is seen
in Table 4 that errest is a close bound on the actual error at the nodes and
the accuracy of the solution at the nodes is preserved throughout the interval
by the Nyström interpolant.

Problem 4 The function f(s) is de�ned so that the integral equation

�x(s)�
Z �=2

0

x(t)p
j sin(s� t)j

dt = f(s); 0 � s � �=2 (51)

has the solution x(s) = s log(s). To apply Fie we write the kernel as

K(s; t) =
1p

j sin(s� t)j
= L(s; t)

1p
js� tj

de�ning L(s; t) implicitly as a function continuous across s = t. For the numer-
ical results reported here, � = 5. It is seen in Table 4 that errest is a close
bound on the actual error at the nodes and the accuracy of the solution at the
nodes is preserved throughout the interval by the Nyström interpolant.

7 In�nite Interval

In this section we consider integral equations of the form

�x(s)�
Z 1

0

K (s; t)x(t) dt = f(s); 0 � s <1 (52)

16



Table 4: TestAlgSing with default tolerances.

Error at Nodes
Problem Final n cond Interpolation Error errest true

#3 32 9 2.4e-5 3.1e-5 1.1e-5
#4 32 19 5.1e-5 6.3e-5 2.6e-5

The approach we take to the numerical solution of an integral equation of this
kind is to change variables to obtain an integral equation on [0; 1] and then apply
a variant of the method developed for smooth kernels in §3. This approach might
succeed in a variety of circumstances, but we discuss only one set of assumptions.
We assume that f(s) is a bounded, continuous function, which is to say that
f 2 BC[0;1). The solution x(s) is to be in the space of uniformly continuous
functions on [0;1);

UC[0;1) =
n
x 2 BC[0;1) j x(1) � lim

t!1
x(t) exists

o
We use

kxk1 = sup
t�0

jx (t)j

as a norm and assume that the integral operator

Kx(s) =
Z 1

0

K (s; t)x(t) dt 0 � s <1 (53)

is compact on UC[0;1). Changing variables to the interval [0; 1] results in
a kernel function bK (�; �). If it extends to a function that is continuous for
0 � �; � � 1, then K is compact on UC[0;1).
We use the changes of variable

t =
1� �
�

; s =
1� �
�

; 0 < �; � � 1

which are inverted by

� =
1

1 + t
; � =

1

1 + s
; 0 � s; t <1

If we introduce the functions

F (�) = f (s) ; X (�) = x (t)

bK (�; �) = 1

�2
K (s; t) =

1

�2
K

�
1� �
�

;
1� �
�

�
; 0 < �; � � 1 (54)

we �nd that equation (52) is equivalent to

�X (�)�
Z 1

0

bK (�; �)X (�) d� = F (�); 0 < � � 1 (55)

17



With this change of variables, x 2 UC[0;1) is equivalent to X 2 C[0; 1]. If
K(s; t) ! 0 fast enough as s; t ! 1, then bK(�; �) will be continuous for
0 � �; � � 1. To gain insight, suppose that for some p; q > 0,

K (s; t) = O
�
s�p + t�q

�
as s; t!1 (56)

It then follows that

bK (�; �) = O ��p + � q�2� as �; � ! 0

If q > 2, we have the continuity of bK(�; �) at (0; 0) that we want. We might also
have the continuity with q = 2, but this will depend on details of the kernel. In
general, the equation (55) on [0; 1] with kernel function (54) can be examined
to determine if the corresponding equation on [0;1) is solvable.
As we noted at the beginning of this section, Fie may be able to solve

equations on [0;1) with other assumptions about the problem. In particular, it
may be able to solve problems with solutions that do not have a limit at in�nity.
There are reasonable prospects for solving such a problem if the solution x and
the kernel K satisfy

K(s; t)x(t) = O(s�p + t�q) as s; t!1

with p � 4 and q � 2, though it might succeed with just p > 2 and q > 0.
Though the solution may not have a limit at in�nity, its behavior is known in
these circumstances:

x(s) � 1

�
f(s) as s!1

The numerical solution of (55) di¤ers from the method of §3 in only a few de-
tails. The most important is that we use a di¤erent quadrature rule, speci�cally
the two-point Gaussian quadrature rule. This has the same order as Simpson�s
rule, but does not evaluate the integrand at the ends of the interval. In this
way we avoid evaluating the kernel function at zero, hence avoid evaluating the
original kernel function at in�nity. The coding is simpli�ed by using the same
quadrature rule for all subintervals. To increase the reliability of the convergence
test, we use ratio = 0:5 in (11), hence estimate the error by

kx� xnk1 � kxn � xn=2k1

One consequence of this decision is that if all goes well, errest will be rather
larger than the true error at the nodes.
The TestInf program has fourteen problems. Of course the interval is �xed,

but � can be speci�ed. This test program has default tolerances AbsTol = 1e-4
and RelTol = 1e-2. Although we think it better to ask for less accuracy when
solving problems on an in�nite interval, we have preferred that the default
tolerances in Fie itself be uniform across the problem classes. Each of the
test programs displays the computed solution, but when the interval is [0;1),

18



this may be unsatisfactory because it gives too much attention to the way x(s)
approaches its limit at in�nity. A more satisfactory display is obtained by
means of an optional argument section that has default value 10. TestInf
plots the computed solution on the interval [0; section]. It is to be appreciated
that section has nothing to do with the computation of the solution, just the
display. All the test programs for �nite intervals assess the accuracy of the
Nyström interpolant by measuring the error at 150 points equally spaced in
[a; b]. Assuming that section identi�es a region of interest when the interval
is [0;1), TestInf measures the error of the interpolant at 150 equally spaced
points in [0; section]. Two of the test problems will illustrate the possibilities
and the performance of the solver for problems on [0;1).
Problem 1 The function f(s) is de�ned so that the integral equation

�x(s)�
Z 1

0

x(t)

1 + s2 + t2
dt = f(s); 0 � s <1 (57)

has the solution x(s) = 1=(1 + s2). I. Sloan [15] uses this problem with � = 1
to compare two ways of solving problems on the interval [0;1), one of which is
essentially the same as the method of Fie. For the numerical results reported
here, � = 1 and the default tolerances of TestInf were used. This kernel
function converges to zero at a relatively slow rate as the arguments tend to
in�nity, but the results seen in Table 5 are quite satisfactory. Note, however,
that the estimated bound on the error is much more conservative than for the
example problems on a �nite interval.
Problem 10 The function f(s) is de�ned so that the integral equation

�x(s)�
Z 1

0

x(t)

(1 + s2 + t2)2
dt = f(s); 0 � s <1 (58)

has the solution x(s) = cos(s)=(1+s2). For the numerical results reported here,
� = 2 and the default tolerances of TestInf were used. Like the preceding
example, the results seen in Table 5 are quite satisfactory and errest is rather
conservative.

Table 5: TestInf with AbsTol = 1e-4, RelTol = 1e-2.

Error at Nodes
Problem Final n cond Interpolation Error errest true

#1 32 23 5.3e-7 9.1e-6 5.3e-7
#10 32 2 5.9e-7 1.6e-5 5.9e-7

8 Cautionary Notes

The examples presented here are representative of a substantial set of test prob-
lems that show Fie to be an e¤ective program for the solution of a large class of

19



Fredholm integral equations of the second kind. Working in a problem solving
environment, it is appropriate that Fie solve integral equations to only modest
accuracy. Correspondingly, all the methods implemented are of relatively low
order and a moderate limit is placed on the size of the dense linear systems that
arise. As a consequence, it is easy to make the solver fail by asking for too much
accuracy.
Fie approximates an integral equation (1) by a system of linear equations

Az = c where the components of c are values of f(s). With modest assumptions
we have convergence as the size of the system, and in particular the number of
samples of f , tends to in�nity, but we cannot expect an acceptable approxi-
mation to x(s) when a few hundred samples are not representative. This is an
issue in solving any integral equation, but it is of special concern when solving
a problem set on [0;1)

Acknowledgement. We appreciate very much the exceptionally helpful re-
ports provided by all the referees. Their comments have led to improvements
in the program and the paper.

References

[1] Atkinson, K. 1967. The numerical solution of Fredholm integral equations
of the second kind, SIAM J. Num. Anal. 4, 337�348.

[2] Atkinson, K. 1976. A Survey of Numerical Methods for the Solution of
Fredholm Integral Equations of the Second Kind, SIAM, Philadelphia.

[3] Atkinson, K. 1976. An automatic program for Fredholm linear integral
equations of the second kind, ACM Trans. Math. Softw. 2, 154�171.

[4] Atkinson, K. 1997. The Numerical Solution of Integral Equations of the
Second Kind, Cambridge University Press, Cambridge.

[5] Atkinson, K. and Han, W. 2005. Theoretical Numerical Analysis: A Func-
tional Analysis Framework, 2nd ed., Springer-Verlag, New York.

[6] Cubillos, P. 1984. Integral operators with Green�s function type kernel, J.
of Comp. & Appl. Math. 10, 25�31.

[7] El-Gendi, S.E. 1969. Chebyshev solution of di¤erential, integral and
integro-di¤erential equations, Comput. J. 12, 282�287.

[8] Fox, L. 1962. Numerical Solution of Ordinary and Partial Di¤erential Equa-
tions, Pergamon Press, London.

[9] GAMS. The Guide to Available Mathematical Software is available at
http://gams.nist.gov/.

20



[10] Kirkwood, J. and Riseman, J. 1948. The intrinsic viscosities and di¤usion
constants of �exible macromolecules in solution, J. Chem. Phys. 16, 565�
573.

[11] Love, E. 1949. The electrostatic �eld of two equal circular conducting disks,
Quart. J. Mech. Appl. Math. 2, 428�451.

[12] Matlab, The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA 01760.

[13] Mikhlin, S. G. and Smolitskiy, K. L. 1967. Approximate Methods for Solu-
tion of Di¤erential and Integral Equations, Elsevier, London.

[14] NAG FORTRAN Library, Numerical Algorithms Group Inc., Oxford, U.K.

[15] Sloan, I. 1981. Quadrature methods for integral equations of the second
kind over in�nite intervals, Math. Comp. 36, 511�523.

21


