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Abstract. Let Ω be an open, simply connected, and bounded region in R
d, d ≥ 2, and assume

its boundary ∂Ω is smooth. Consider solving the eigenvalue problem Lu = λu for an elliptic partial
differential operator L over Ω with zero values for either Dirichlet or Neumann boundary conditions.
We propose, analyze, and illustrate a ‘spectral method’ for solving numerically such an eigenvalue
problem. This is an extension of the methods presented earlier in [5], [6].
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1. INTRODUCTION. We consider the numerical solution of the eigenvalue
problem

Lu(s) ≡ −
d∑

k,ℓ=1

∂

∂sk

(
ak,ℓ(s)

∂u(s)

∂sℓ

)
+ γ(s)u(s) = λu(s), s ∈ Ω ⊆ R

d (1.1)

with the Dirichlet boundary condition

u(s) ≡ 0, s ∈ ∂Ω. (1.2)

or with Neumann boundary condition

Nu(s) ≡ 0, s ∈ ∂Ω, (1.3)

where the conormal derivative Nu(s) on the boundary is given by

Nu(s) :=

d∑

j,k=1

aj,k(s)
∂u

∂sj

~nk(s)

and ~n(s) is the inside normal to the boundary ∂Ω at s. Assume d ≥ 2. Let Ω be an
open, simply–connected, and bounded region in R

d, and assume that its boundary
∂Ω is smooth and sufficiently differentiable. Similarly, assume the functions γ(s) and
ai,j(s), 1 ≤ i, j ≤ d, are several times continuously differentiable over Ω. As usual,
assume the matrix A(s) = [ai,j(s)] is symmetric and satisfies the strong ellipticity
condition,

ξTA(s)ξ ≥ c0ξ
Tξ, s ∈ Ω, ξ ∈ R

d (1.4)

with c0 > 0. For convenience and without loss of generality, we assume γ(s) > 0,
s ∈ Ω; for otherwise, we can add a multiple of u(s) to both sides of (1.1), shifting the
eigenvalues by a known constant.

In the earlier papers [5] and [6] we introduced a spectral method for the numerical
solution of elliptic problems over Ω with Dirichlet and Neumann boundary conditions,
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respectively. In the present work, this spectral method is extended to the numerical
solution of the eigenvalue problem for (1.1),(1.2) and (1.1),(1.3). We note, again, that
our work applies only to regions Ω with a boundary ∂Ω that is smooth.

There is a large literature on spectral methods for solving elliptic partial dif-
ferential equations. For example, see the books [18], [11], [12], [13], and [27]. The
methods presented in these books use a decomposition and/or transformation of the
region and problem so as to apply one-variable approximation methods in each spatial
variable. In contrast, the present work and that of our earlier papers [5] and [6] use
multi-variable approximation methods. During the past 20 years, principally, there
has been an active development of multi-variable approximation theory, and it is this
which we are using in defining and analyzing our spectral methods. It is not clear
as to how these new methods compare to the earlier spectral methods, although our
approach is rapidly convergent; see §4.2 for a numerical comparison. This paper is
intended to simply present and illustrate these new methods, with detailed numerical
and computational comparisons to earlier spectral methods to follow later.

The numerical method is presented in §2, including an error analysis. Implemen-
tation of the method is discussed in §3 for problems in both R

2 and R
3. Numerical

examples are presented in §4.

2. The Eigenvalue problem. Our spectral method is based on polynomial
approximation on the unit ball Bd in R

d. To transform a problem defined on Ω to an
equivalent problem defined on Bd, we review some ideas from [5] and [6], modifying
them as appropriate for this paper.

Assume the existence of a function

Φ : Bd
1−1−→
onto

Ω (2.1)

with Φ a twice–differentiable mapping, and let Ψ = Φ−1 : Ω
1−1−→
onto

Bd. For v ∈ L2 (Ω),

let

ṽ(x) = v (Φ (x)) , x ∈ Bd ⊆ R
d (2.2)

and conversely,

v(s) = ṽ (Ψ (s)) , s ∈ Ω ⊆ R
d. (2.3)

Assuming v ∈ H1 (Ω), we can show

∇xṽ (x) = J (x)
T ∇sv (s) , s = Φ (x)

with J (x) the Jacobian matrix for Φ over the unit ball Bd,

J(x) ≡ (DΦ) (x) =

[
∂ϕi(x)

∂xj

]d

i,j=1

, x ∈ Bd.

To use our method for problems over a region Ω, it is necessary to know explicitly the
functions Φ and J . We assume

det J(x) 6= 0, x ∈ Bd.

Similarly,

∇sv(s) = K(s)T∇xṽ(x), x = Ψ(s)
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with K(s) the Jacobian matrix for Ψ over Ω. By differentiating the identity

Ψ (Φ (x)) = x, x ∈ Bd

we obtain

K (Φ (x)) = J (x)
−1
.

Assumptions about the differentiability of ṽ (x) can be related back to assumptions
on the differentiability of v(s) and Φ(x).

Lemma 2.1. If Φ ∈ Ck
(
Bd

)
and v ∈ Cm

(
Ω

)
, then ṽ ∈ Cq

(
Bd

)
with q =

min {k,m}.
Proof. A proof is straightforward using (2.2).

A converse statement can be made as regards ṽ, v, and Ψ in (2.3).

Consider now the nonhomogeneous problem Lu = f ,

Lu(s) ≡ −
d∑

k,ℓ=1

∂

∂sk

(
ak,ℓ(s)

∂u(s)

∂sℓ

)
+ γ(s)u(s) = f(s), s ∈ Ω ⊆ R

d. (2.4)

Using the transformation (2.1), it is shown in [5, Thm 2] that (2.4) is equivalent to

−
d∑

k,ℓ=1

∂

∂xk

(
ãk,ℓ(x) det (J(x))

∂ṽ(x)

∂xℓ

)
+ [γ̃(x) det J(x)] ũ(x)

= f̃ (x) detJ(x), x ∈ Bd

with the matrix Ã (x) ≡ [ãi,j(x)] given by

Ã (x) = J (x)−1A (Φ (x))J (x)−T . (2.5)

The matrix Ã satisfies the analogue of (1.4), but over Bd. Thus the original eigenvalue
problem (1.1) can be replaced by

−
d∑

k,ℓ=1

∂

∂xk

(
ãk,ℓ(x) det (J(x))

∂ũ(x)

∂xℓ

)
+ [γ̃(x) det J(x)] ũ(x)

= λũ(x) det J(x), x ∈ Bd

(2.6)

As a consequence of this transformation, we can work with an elliptic problem defined
overBd rather than over the original region Ω. In the following we will use the notation
LD and LN when we like to emphasize the domain of the operator L, so

LD : H2(Ω) ∩H1
0 (Ω) → L2(Ω)

LN : H2
N (Ω) → L2(Ω)

are invertible operators, see [22], [29]. Here H2
N (Ω) is defined by

H2
N (Ω) = {u ∈ H2(Ω) : Nu(s) = 0, s ∈ ∂Ω}
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2.1. The variational framework for the Dirichlet problem. To develop
our numerical method, we need a variational framework for (2.4) with the Dirichlet
condition u = 0 on ∂Ω. As usual, multiply both sides of (2.4) by an arbitrary
v ∈ H1

0 (Ω), integrate over Ω, and apply integration by parts. This yields the problem
of finding u ∈ H1

0 (Ω) such that

A (u, v) = (f, v) ≡ ℓ (v) , for all v ∈ H1
0 (Ω) (2.7)

with

A (v, w) =

∫

Ω




d∑

k,ℓ=1

ak,ℓ(s)
∂v(s)

∂sℓ

∂w(s)

∂sk

+ γ(s)v(s)w(s)



 ds, v, w ∈ H1
0 (Ω) . (2.8)

The right side of (2.7) uses the inner product (·, ·) of L2 (Ω). The operators LD and
A are related by

(LDu, v) = A (u, v) , u ∈ H2 (Ω) , v ∈ H1
0 (Ω) , (2.9)

an identity we use later. The function A is an inner product and it satisfies

|A (v, w)| ≤ cA ‖v‖1 ‖w‖1 , v, w ∈ H1
0 (Ω) (2.10)

A (v, v) ≥ ce‖v‖2
1, v ∈ H1

0 (Ω) (2.11)

for some positive constants cA and ce. Here the norm ‖ · ‖1 is given by

‖u‖2
1 :=

∫

Ω

[
d∑

k=1

(
∂u(s)

∂sk

)2

+ u2(s)

]
ds (2.12)

Associated with the Dirichlet problem

LDu(s) = f(s), x ∈ Ω, f ∈ L2 (Ω) (2.13)

u(s) = 0, x ∈ ∂Ω (2.14)

is the Green’s function integral operator

u(s) = GDf(s). (2.15)

Lemma 2.2. The operator GD is a bounded and self–adjoint operator from L2 (Ω)
into H2 (Ω) ∩ H1

0 (Ω). Moreover, it is a compact operator from L2 (Ω) into H1
0 (Ω),

and more particularly, it is a compact operator from H1
0 (Ω) into H1

0 (Ω).
Proof. A proof can be based on [16, §6.3, Thm. 5] together with the fact that the
embedding of H2 (Ω) ∩ H1

0 (Ω) into H1
0 (Ω) is compact. The symmetry follows from

the self–adjointness of the original problem (2.13)–(2.14).

We convert (2.9) to

(f, v) = A (GDf, v) , v ∈ H1
0 (Ω) , f ∈ L2 (Ω) . (2.16)

The problem (2.13)–(2.14) has the following variational reformulation: find u ∈
H1

0 (Ω) such that

A (u, v) = ℓ(v), ∀v ∈ H1
0 (Ω) . (2.17)
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This problem can be shown to have a unique solution u by using the Lax–Milgram
Theorem to imply its existence; see [8, Thm. 8.3.4]. In addition,

‖u‖1 ≤ 1

ce
‖ℓ‖

with ‖ℓ‖ denoting the operator norm for ℓ regarded as a linear functional on H1
0 (Ω).

2.2. The variational framework for the Neumann problem. Now we
present the variational framework for (2.4) with the Neumann condition Nu = 0
on ∂Ω. Assume that u ∈ H2(Ω) is a solution to the problem (2.4),(1.3). Again,
multiply both sides of (2.4) by an arbitrary v ∈ H1 (Ω), integrate over Ω, and apply
integration by parts. This yields the problem of finding u ∈ H1 (Ω) such that

A (u, v) = (f, v) ≡ ℓ (v) , for all v ∈ H1 (Ω) (2.18)

with A given by (2.8).The right side of (2.18) uses again the inner product of L2 (Ω).
The operators LN and A are now related by

(LNu, v) = A (u, v) , v ∈ H1 (Ω) , (2.19)

and u ∈ H2(Ω) which fulfills Nu ≡ 0. The inner product A satisfies the properties
(2.10) and (2.11) for functions u, v ∈ H1(Ω).

Associated with the Neumann problem

LNu(s) = f(s), x ∈ Ω, f ∈ L2 (Ω) (2.20)

Nu(s) = 0, x ∈ ∂Ω (2.21)

is the Green’s function integral operator

u(s) = GNf(s).

Lemma 2.3. The operator GN is a bounded and self–adjoint operator from L2 (Ω)
into H2 (Ω). Moreover, it is a compact operator from L2 (Ω) into H1 (Ω), and more
particularly, it is a compact operator from H1 (Ω) into H1 (Ω).
Proof. The proof uses the same arguments as the proof of Lemma 2.2.

We convert (2.19) to

(f, v) = A (GNf, v) , v ∈ H1 (Ω) , f ∈ L2 (Ω) .

The problem (2.20)–(2.21) has the following variational reformulation: find u ∈
H1 (Ω) such that

A (u, v) = ℓ(v), ∀v ∈ H1 (Ω) . (2.22)

This problem can be shown to have a unique solution u by using the Lax–Milgram
Theorem to imply its existence; see [8, Thm. 8.3.4]. In addition,

‖u‖1 ≤ 1

ce
‖ℓ‖

with ‖ℓ‖ denoting the operator norm for ℓ regarded as a linear functional on H1 (Ω).
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2.3. The approximation scheme. Denote by Πn the space of polynomials in
d variables that are of degree ≤ n: p ∈ Πn if it has the form

p(x) =
∑

|i|≤n

aix
i1
1 x

i2
2 . . . xid

d

with i a multi–integer, i = (i1, . . . , id), and |i| = i1 + · · · + id. Over Bd, our approxi-
mation subspace for the Dirichlet problem is

X̃D,n =
{(

1 − ‖x‖2
2

)
p(x) | p ∈ Πn

}

with ‖x‖2
2 = x2

1 + · · ·+ x2
d. The approximation subspace for the Neumann problem is

X̃N ,n = Πn

(we use here N to make a distinction between the dimension of X̃N ,n, see below, and

the notation for the subspace) The subspaces X̃N ,n and X̃D,n have dimension

N ≡ Nn =

(
n+ d

d

)

However our problem (2.7) is defined over Ω, and thus we use modifications of X̃D,n

and X̃N ,n:

XD,n =
{
ψ (s) = ψ̃ (Ψ (s)) : ψ̃ ∈ X̃D,n

}
⊆ H1

0 (Ω) (2.23)

XN ,n =
{
ψ (s) = ψ̃ (Ψ (s)) : ψ̃ ∈ X̃N ,n

}
⊆ H1 (Ω)

In the following we avoid the index D and N if a statement applies to either of the
subspaces and write just X̃n and similar Xn. This set of functions Xn is used in the
initial definition of our numerical scheme and for its convergence analysis; but the
simpler space X̃n is used in the actual implementation of the method. They are two
aspects of the same numerical method.

To solve (2.17) or (2.22) approximately, we use the Galerkin method with trial
space Xn to find un ∈ Xn for which

A (un, v) = ℓ(v), ∀v ∈ Xn.

For the eigenvalue problem (1.1), find un ∈ Xn for which

A (un, v) = λ (un, v) , ∀v ∈ Xn. (2.24)

Write

un (s) =

N∑

j=1

αjψj (s) (2.25)

with {ψj}N

j=1 a basis of Xn. Then (2.24) becomes

N∑

j=1

αjA (ψj , ψi) = λ

N∑

j=1

αj (ψj , ψi) , i = 1, . . . , N (2.26)
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The coefficients can be related back to a polynomial basis for X̃n and to integrals

over Bd. Let
{
ψ̃j

}
denote the basis of X̃n corresponding to the basis {ψj} for Xn.

Using the transformation s = Φ(x),

(ψj , ψi) =

∫

Ω

ψj (s)ψi (s) ds

=

∫

Bd

ψ̃j (x) ψ̃i (x) |detJ (x)| dx

A (ψj , ψi) =

∫

Ω




d∑

k,ℓ=1

ak,ℓ (s)
∂ψj(s)

∂sk

∂ψi(s)

∂sℓ

+ γ(s)ψj(s)ψi(s)


 ds

=

∫

Ω

[
{∇sψi (s)}T

A(s) {∇sψj (s)} + γ(s)ψj(s)ψi(s)
]
ds

=

∫

Ω

[{
K(Φ (x))T∇xψ̃i (x)

}T

A (Φ (x))
{
K(Φ (x))T∇xψ̃j (x)

}

+γ̃(x)ψ̃j(x)ψ̃i(x)
]
|detJ (x)| dx

=

∫

Bd

[
∇xψ̃i (x)

T
Ã(x)∇xψ̃j (x) + γ̃(x)ψ̃i (x) ψ̃j (x)

]
|detJ (x)| dx

with the matrix Ã(x) given in (2.5). With these evaluations of the coefficients, it is
straightforward to show that (2.26) is equivalent to a Galerkin method for (2.6) using

the standard inner product of L2 (Bd) and the approximating subspace X̃n.

2.4. Convergence analysis. In this Section we will use G to refer to either of
the Green operators GD or GN . In both cases G is a compact operator from a subspace
Y ⊂ L2(Ω) into itself. We have Y = H1

0 (Ω) in the Dirichlet case and Y = H1(Ω)
in the Neumann case. In both cases Y carries the norm ‖ · ‖H1(Ω). On Bd we use

notation Ỹ to denote either of the subspaces H1
0 (Bd) or H1(Bd) The scheme (2.26) is

implicitly a numerical approximation of the integral equation eigenvalue problem

λGu = u. (2.27)

Lemma 2.4. The numerical method (2.24) is equivalent to the Galerkin method
approximation of the integral equation (2.27), with the Galerkin method based on the
inner product A (·, ·) for Y.
Proof. For the Galerkin solution of (2.27) we seek a function un in the form (2.25),
and we force the residual to be orthogonal to Xn. This leads to

λ
N∑

j=1

αjA (Gψj , ψi) =
N∑

j=1

αjA (ψj , ψi) (2.28)

for i = 1, . . . , N . From (2.16), we have A (Gψj , ψi) = (ψj , ψi), and thus

λ
N∑

j=1

αj (ψj , ψi) =
N∑

j=1

αjA (ψj , ψi)

This is exactly the same as (2.26).
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Let Pn be the orthogonal projection of Y onto Xn, based on the inner product
A (·, ·). Then (2.28) is the Galerkin approximation,

PnGun =
1

λ
un, un ∈ Xn (2.29)

for the integral equation eigenvalue problem (2.27). Much is known about such
schemes, as we discuss below. The conversion of the eigenvalue problem (2.24) into
the equivalent eigenvalue problem (2.29) is motivated by a similar idea used in Osborn
[25].

The numerical solution of eigenvalue problems for compact integral operators has
been studied by many people for over a century. With Galerkin methods, we note
particularly the early work of Krasnoselskii [21, p. 178]. The book of Chatelin [14]
presents and summarizes much of the literature on the numerical solution of such
eigenvalue problems for compact operators. For our work we use the results given in
[2], [3] for pointwise convergent operator approximations that are collectively compact.

We begin with some preliminary lemmas.
Lemma 2.5. For suitable positive constants c1 and c2,

c1‖ṽ‖H1(Bd) ≤ ‖v‖H1(Ω) ≤ c2‖ṽ‖H1(Bd)

for all functions v ∈ Y, with ṽ the corresponding function of (2.2). Thus, for a
sequence {vn} in Y,

vn → v in Y ⇐⇒ ṽn → ṽ in Ỹ

with {ṽn} the corresponding sequence in Ỹ.

Proof. Begin by noting that there is a 1-1 correspondence between Y and Ỹ based
on using (2.1)–(2.3). Next,

‖v‖2
H1(Ω) =

∫

Ω

[
|∇v (s)|2 + |v(s)|2

]
ds

=

∫

Bd

[∣∣∣∇ṽ (x)
T
J (x)

−1
J (x)

−T ∇ṽ (x)
∣∣∣ + |ṽ(x)|2

]
|det J(x)| dx

≤
[
max
x∈B

|detJ(x)|
]

max

{
max
x∈B

‖J (x)
−1 ‖2, 1

}∫

Bd

[
|∇ṽ (x)|2 + |ṽ(x)|2

]
dx

‖v‖H1(Ω) ≤ c2‖ṽ‖H1(Bd)

for a suitable constant c2 (Ω). The reverse inequality, with the roles of ‖ṽ‖H1(Bd) and
‖v‖H1(Ω) reversed, follows by an analogous argument.

Lemma 2.6. The set ∪n≥1Xn is dense in Y.

Proof. The set ∪n≥1X̃n is dense in Ỹ , a result shown in [5, see (15)]. We can then
use the correspondence between H (Ω) and H1 (Bd), given in Lemma 2.5, to show
that ∪n≥1Xn is dense in Y.

Lemma 2.7. The standard norm ‖ · ‖1 on Y and the norm ‖v‖A =
√
A (v, v) are

equivalent in the topology they generate. More precisely,

√
ce‖v‖1 ≤ ‖v‖A ≤ √

cA‖v‖1, v ∈ Y. (2.30)
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with the constants cA, ce taken from (2.10) and (2.11), respectively. Convergence of
sequences {vn} is equivalent in the two norms.
Proof. It is immediate from (2.11) and (2.10).

Lemma 2.8. For the orthogonal projection operator Pn,

Pnv → v as n→ ∞, for all v ∈ Y. (2.31)

Proof. This follows from the definition of an orthogonal projection operator and
using the result that ∪n≥1Xn is dense in Y.

Corollary 2.9. For the integral operator G,

‖(I − Pn)G‖ → 0 as n→ ∞

using the norm for operators from Y into Y.
Proof. Consider G and Pn as operators on Y into Y. The result follows from the
compactness of G and the pointwise convergence in (2.31); see [4, Lemma 3.1.2].

Lemma 2.10. {PnG} is collectively compact on Y .
Proof. This follows for all such families {PnG} with G compact on a Banach space
Y and {Pn} pointwise convergent on Y. To prove this requires showing

{PnGv | ‖v‖1 ≤ 1, n ≥ 1}

has compact closure in Y. This can be done by showing that the set is totally bounded.
We omit the details of the proof.

Summarizing, {PnG} is a collectively compact family that is pointwise conver-
gent on Y. With this, the results in [2], [3] can be applied to (2.29) as a numerical
approximation to the eigenvalue problem (2.27). We summarize the application of
those results to (2.29).

Theorem 2.11. Let λ be an eigenvalue for the problem Dirichlet problem (1.1),
(1.2) or the Neumann problem (1.1), (1.3). Assume λ has multiplicity ν, and let
χ(1), . . . , χ(ν) be a basis for the associated eigenfunction subspace. Let ε > 0 be chosen
such that there are no other eigenvalues within a distance ε of λ. Let σn denote the
eigenvalue solutions of (2.24) that are within ε of λ. Then for all sufficiently large n,
say n ≥ n0, the sum of the multiplicities of the approximating eigenvalues within σn

equals ν. Moreover,

max
λn∈σn

|λ− λn| ≤ c max
1≤k≤ν

‖ (I − Pn)χ(k)‖1 (2.32)

Let u be an eigenfunction for λ. Let Wn be the direct sum of the eigenfunction

subspaces associated with the eigenvalues λn ∈ σn, and let
{
u

(1)
n , . . . , u

(ν)
n

}
be a basis

for Wn. Then there is a sequence

un =

ν∑

k=1

αn,ku
(k)
n ∈ Wn

for which

‖u− un‖1 ≤ c max
1≤k≤ν

‖ (I − Pn)χ(k)‖1 (2.33)

for some constant c > 0 dependent on λ.
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Proof. This is a direct consequence of results in [2], [3], together with the compactness
of G on Y. It also uses the equivalence of norms given in (2.30).

The norms ‖ (I − Pn)χ(k)‖1 can be bounded using results from Ragozin [26], just
as was done in [5]. We begin with the following result from [26].

Lemma 2.12. Assume w ∈ Ck+2
(
Bd

)
for some k > 0, and assume w|∂Bd

= 0.

Then there is a polynomial qn ∈ X̃D,n for which

‖w − qn‖∞ ≤ D (k, d)n−k
(
n−1 ‖w‖∞,k+2 + ω

(
w(k+2), 1/n

))

In this,

‖w‖∞,k+2 =
∑

|i|≤k+2

∥∥∂iw
∥∥
∞

ω (g, δ) = sup
|x−y|≤δ

|g (x) − g (y)|

ω
(
w(k+2), δ

)
=

∑

|i|=k+2

ω
(
∂iw, δ

)

The corresponding result that is needed with the Neumann problem can be ob-
tained from [10]:

Lemma 2.13. Assume w ∈ Ck+2
(
Bd

)
for some k > 0. Then there is a polyno-

mial qn ∈ X̃N ,n for which

‖w − qn‖∞ ≤ D (k, d)n−k
(
n−1 ‖w‖∞,k+2 + ω

(
w(k+2), 1/n

))

Theorem 2.14. Recall the notation and assumptions of Theorem 2.11. Assume
the eigenfunction basis functions χ(k) ∈ Cm+2 (Ω) and assume Φ ∈ Cm+2 (Bd), for
some m ≥ 1. Then

max
λn∈σn

|λ− λn| = O
(
n−m

)

‖u− un‖1 = O
(
n−m

)

Proof. Begin with (2.32)–(2.33). To obtain the bounds for ‖ (I − Pn)u(k)‖1 given
above using Lemma 2.12 or 2.13 , refer to the argument given in [5].

3. Implementation. In this section we use again the notation Xn if a statement
applies to both XD,n or XNn; similar for X̃n. Consider the implementation of the
Galerkin method of (2.24) for the eigenvalue problem (1.1). We are to find the function
un ∈ Xn satisfying (2.26). To do so, we begin by selecting a basis for Πn that
is orthonormal in L2 (Bd), denoting it by {ϕ̃1, . . . , ϕ̃N}, with N ≡ Nn = dimΠn.
Choosing such an orthonormal basis is an attempt to have the matrix associated with
the left side of the linear system in (2.26) be better conditioned. Next, let

ψ̃i(x) = ϕ̃i(x), i = 1, . . . , Nn

10



in the Neumann case and

ψ̃i(x) =
(
1 − ‖x‖2

2

)
ϕ̃i(x), i = 1, . . . , Nn (3.1)

in the Dirichlet case. These functions form a basis for X̃n. As in (2.23), use as the
corresponding basis of Xn the set {ψ1, . . . , ψN}.

We seek

un(s) =

N∑

j=1

αjψj(s)

Then following the change of variable s = Φ (x), (2.26) becomes

N∑

j=1

αj

∫

Bd

[
∇ψ̃j (x)

T
Ã(x)∇ψ̃i (x) + γ̃(x)ψ̃j (x) ψ̃i (x)

]
|detJ (x)| dx

= λ

N∑

j=1

αj

∫

Bd

ψ̃j (x) ψ̃i (x) |detJ (x)| dx, i = 1, . . . , N

(3.2)

We need to calculate the orthonormal polynomials and their first partial derivatives;
and we also need to approximate the integrals in the linear system. For an introduction
to the topic of multivariate orthogonal polynomials, see Dunkl and Xu [15] and Xu
[30]. For multivariate quadrature over the unit ball in R

d, see Stroud [28].

3.1. The planar case. The dimension of Πn is

Nn =
1

2
(n+ 1) (n+ 2)

For notation, we replace x with (x, y). How do we choose the orthonormal basis

{ϕ̃ℓ(x, y)}N
ℓ=1 for Πn? Unlike the situation for the single variable case, there are many

possible orthonormal bases over B = D, the unit disk in R
2. We have chosen one that

is particularly convenient for our computations. These are the ”ridge polynomials”
introduced by Logan and Shepp [23] for solving an image reconstruction problem. We
summarize here the results needed for our work.

Let

Vn = {P ∈ Πn : (P,Q) = 0 ∀Q ∈ Πn−1}

the polynomials of degree n that are orthogonal to all elements of Πn−1. Then the
dimension of Vn is n+ 1; moreover,

Πn = V0 ⊕ V1 ⊕ · · · ⊕ Vn (3.3)

It is standard to construct orthonormal bases of each Vn and to then combine them to
form an orthonormal basis of Πn using the latter decomposition. As an orthonormal
basis of Vn we use

ϕ̃n,k(x, y) =
1√
π
Un (x cos (kh) + y sin (kh)) , (x, y) ∈ D, h =

π

n+ 1
(3.4)

11



for k = 0, 1, . . . , n. The function Un is the Chebyshev polynomial of the second kind
of degree n:

Un(t) =
sin (n+ 1) θ

sin θ
, t = cos θ, −1 ≤ t ≤ 1, n = 0, 1, . . .

The family {ϕ̃n,k}n

k=0 is an orthonormal basis of Vn. As a basis of Πn, we order {ϕ̃n,k}
lexicographically based on the ordering in (3.4) and (3.3):

{ϕ̃ℓ}N

ℓ=1 = {ϕ̃0,0, ϕ̃1,0, ϕ̃1,1, ϕ̃2,0, . . . , ϕ̃n,0, . . . , ϕ̃n,n}
Returning to (3.1), we define

ψ̃n,k(x, y) =
(
1 − x2 − y2

)
ϕ̃n,k(x, y)

for the Dirichlet case and

ψ̃n,k(x, y) = ϕ̃n,k(x, y)

in the Neumann case. To calculate the first order partial derivatives of ψ̃n,k(x, y), we

need U
′

n(t). The values of Un(t) and U
′

n(t) are evaluated using the standard triple
recursion relations

Un+1(t) = 2tUn(t) − Un−1(t)

U
′

n+1(t) = 2Un(t) + 2tU
′

n(t) − U
′

n−1(t)

For the numerical approximation of the integrals in (3.2), which are over B being
the unit disk, we use the formula

∫

B

g(x, y) dx dy ≈
q∑

l=0

2q∑

m=0

g

(
rl,

2πm

2q + 1

)
ωl

2π

2q + 1
rl (3.5)

Here the numbers ωl are the weights of the (q + 1)-point Gauss-Legendre quadrature
formula on [0, 1]. Note that

∫ 1

0

p(x)dx =

q∑

l=0

p(rl)ωl,

for all single-variable polynomials p(x) with deg (p) ≤ 2q + 1. The formula (3.5)
uses the trapezoidal rule with 2q + 1 subdivisions for the integration over B in the
azimuthal variable. This quadrature (3.5) is exact for all polynomials g ∈ Π2q. This
formula is also the basis of the hyperinterpolation formula discussed in [19].

3.2. The three–dimensional case. In R
3, the dimension of Πn is

Nn =

(
n+ 3

3

)
=

1

6
(n+ 1) (n+ 2) (n+ 3)

Here we choose orthonormal polynomials on the unit ball as described in [15],

ϕ̃m,j,β(x) = cm,jp
(0,m−2j+ 1

2
)

j (2‖x‖2 − 1)Sβ,m−2j

(
x

‖x‖

)

= cm,j‖x‖m−2jp
(0,m−2j+ 1

2
)

j (2‖x‖2 − 1)Sβ,m−2j

(
x

‖x‖

)
, (3.6)

j = 0, . . . , ⌊m/2⌋, β = 0, 1, . . . , 2(m− 2j), m = 0, 1, . . . , n

12



Here cm,j = 2
5
4
+ m

2
−j is a constant, and p

(0,m−2j+ 1
2
)

j , j ∈ N0, are the normalized Jabobi
polynomials which are orthonormal on [−1, 1] with respect to the inner product

(v, w) =

∫ 1

−1

(1 + t)m−2j+ 1
2 v(t)w(t) dt,

see for example [1], [17]. The functions Sβ,m−2j are spherical harmonic functions, and
they are given in spherical coordinates by

Sβ,k(φ, θ) = c̃β,k





cos(β
2φ)T

β

2

k (cos θ), β even

sin(β+1
2 φ)T

β+1

2

k (cos θ), β odd

The constant c̃β,k is chosen in such a way that the functions are orthonormal on the
unit sphere S2 in R

3:
∫

S2

Sβ,k(x)Seβ,ek
(x) dS = δ

β,eβ
δ
k,ek

The functions T l
k are the associated Legendre polynomials, see [20], [24]. According

to (3.1) we define the basis for our space of trial functions by

ψ̃m,j,β(x) = (1 − ‖x‖2)ϕ̃m,j,β(x)

in the Dirichlet case and by

ψ̃m,j,β(x) = ϕ̃m,j,β(x)

in the Neumann case We can order the basis lexicographically. To calculate all of
the above functions we can use recursive algorithms similar to the one used for the
Chebyshev polynomials. These algorithms also allow the calculation of the derivatives
of each of these functions, see [17], [31]

For the numerical approximation of the integrals in (3.2) we use a quadrature
formula for the unit ball B

∫

B

g(x) dx =

∫ 1

0

∫ 2π

0

∫ π

0

g̃(r, θ, φ) r2 sin(φ) dφ dθ dr ≈ Qq[g]

Qq[g] :=

2q∑

i=1

q∑

j=1

q∑

k=1

π

q
ωj νkg̃

(
ζk + 1

2
,
π i

2q
, arccos(ξj)

)

Here g̃(r, θ, φ) = g(x) is the representation of g in spherical coordinates. For the θ
integration we use the trapezoidal rule, because the function is 2π−periodic in θ. For
the r direction we use the transformation

∫ 1

0

r2v(r) dr =

∫ 1

−1

(
t+ 1

2

)2

v

(
t+ 1

2

)
dt

2

=
1

8

∫ 1

−1

(t+ 1)2v

(
t+ 1

2

)
dt

≈
q∑

k=1

1

8
ν′k

︸︷︷︸
=:νk

v

(
ζk + 1

2

)
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where the ν′k and ζk are the weights and the nodes of the Gauss quadrature with q
nodes on [−1, 1] with respect to the inner product

(v, w) =

∫ 1

−1

(1 + t)2v(t)w(t) dt

The weights and nodes also depend on q but we omit this index. For the φ direction
we use the transformation

∫ π

0

sin(φ)v(φ) dφ =

∫ 1

−1

v(arccos(φ)) dφ

≈
q∑

j=1

ωjv(arccos(ξj))

where the ωj and ξj are the nodes and weights for the Gauss–Legendre quadrature
on [−1, 1]. For more information on this quadrature rule on the unit ball in R

3, see
[28].

Finally we need the gradient in Cartesian coordinates to approximate the integral
in (3.2), but the function ϕ̃m,j,β(x) in (3.6) is given in spherical coordinates. Here we
simply use the chain rule, with x = (x, y, z),

∂

∂x
v(r, θ, φ) =

∂

∂r
v(r, θ, φ) cos(θ) sin(φ) − ∂

∂θ
v(r, θ, φ)

sin(θ)

r sin(φ)

+
∂

∂φ
v(r, θ, φ)

cos(θ) cos(φ)

r

and similarly for ∂
∂y

and ∂
∂z

.

4. Numerical examples. Our programs are written in Matlab. Some of the
examples we give are so chosen that we can invert explicitly the mapping Φ, to be able
to better construct our test examples. Having a knowledge of an explicit inverse for Φ
is not needed when applying the method; but it can simplify the construction of test

cases. In other test cases, we have started from a boundary mapping ϕ : ∂Bd
1−1−→
onto

∂Ω

and have generated a smooth mapping Φ : Bd
1−1−→
onto

Ω.

The problem of generating such a mapping Φ when given only ϕ is often quite
difficult. In some cases, a suitable definition for Φ is straightforward. For example,
the ellipse

ϕ (cos θ, sin θ) = (a cos θ, b sin θ) , 0 ≤ θ ≤ 2π

has the following simple extension to the unit disk B2,

Φ (x, y) = (ax, by) , (x, y) ∈ B2 (4.1)

In general, however, the construction of Φ when given only ϕ is non-trivial. For the
plane, we can always use a conformal mapping; but this is too often non-trivial to con-
struct. In addition, conformal mappings are often more complicated than are needed.
For example, the simple mapping (4.1) is sufficient for our applications, whereas the
conformal mapping of the unit disk onto the ellipse is much more complicated (see [7,
§5]).
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Fig. 4.1. The ‘limacon’ region (4.3)-(4.4)

We have developed a variety of numerical methods to generate a suitable Φ when
given the boundary mapping ϕ. The topic is too complicated to consider in any
significant detail in this paper and it will be the subject of a forthcoming paper.
However, to demonstrate that our algorithms for generating such extensions Φ do
exist, we give examples of such Φ in the following examples that illustrate our spectral
method.

4.1. The planar Dirichlet problem. We begin by illustrating the numerical
solution of the eigenvalue problem

Lu(s) ≡ −∆u = λu(s), s ∈ Ω ⊆ R
2

u(s) ≡ 0, s ∈ ∂Ω
(4.2)

This corresponds to choosing A = I in the framework presented earlier Thus we need
to calculate

Ã (x) = J (x)
−1
J (x)

−T

For our variables, we replace a point x ∈ B2 with (x, y), and we replace a point
s ∈ Ω with (s, t). The boundary ∂Ω is a generalized limacon boundary defined by

ϕ (cos θ, sin θ) = (p3 + p1 cos θ + p2 sin θ) (a cos θ, b sin θ) , 0 ≤ θ ≤ 2π (4.3)

The constants a, b are positive numbers, and the constants p = (p1, p2, p3) must satisfy

p3 >
√
p2
1 + p2

2

15



Fig. 4.2. Eigenfunction for the limacon boundary corresponding to the approximate eigenvalue
λ(1) .

= 0.68442

The mapping Φ : B2 → Ω is given by (s, t) = Φ (x, y) with both components s and t
being polynomials in (x, y). For our numerical example, each component of Φ (x, y)
is a polynomial of degree 2 in (x, y). We use the particular parameters

(a, b) = (1, 1) , p = (1.0, 2.0, 2.5) (4.4)

In Figure 4.1, we give the images in Ω of the circles r = j/10, j = 0, 1, . . . , 10 and the
azimuthal lines θ = jπ/10, j = 1, . . . , 20. Our generated mapping Φ maps the origin
(0, 0) to a more centralized point inside the region.

As a sidenote, the straightforward generalization of (4.3),

Φ (x, y) = (p3 + p1x+ p2y) (ax, by) , (x, y) ∈ B2

does not work. It is neither 1-1 nor onto. Also, the mapping

Φ (r cos θ, r sin θ) = (p3 + p1 cos θ + p2 sin θ) (ar cos θ, br sin θ)

does not work because it is not differentiable at the origin, (x, y) = (0, 0).

Figures 4.2 and 4.3 give the approximate eigenfunctions for the two smallest
eigenvalues of (4.2) over our limacon region. Because the true eigenfunctions and
eigenvalues are unknown for almost all cases (with the unit ball as an exception), we

used other methods for studying experimentally the rate of convergence. Let λ
(k)
n

denote the value of the kth eigenvalue based on the degree n polynomial approxima-

tion, with the eigenvalues taken in increasing order. Let u
(k)
n denote a corresponding

16



Fig. 4.3. Eigenfunction for the limacon boundary corresponding to the approximate eigenvalue
λ(2) .

= 1.56598

eigenfunction,

ũ(k)
n (x) =

Nn∑

j=1

α
(n)
j ψ̃j(x)

with α(n) ≡
[
α

(n)
1 , . . . , α

(n)
N

]
the eigenvector of (3.2) associated with the eigenvalue

λ
(k)
n . We normalize the eigenfunctions by requiring ‖u(k)

n ‖∞ = 1. Define

Λn =
∣∣∣λ(k)

n+1 − λ(k)
n

∣∣∣

Dn = ‖u(k)
n+1 − u(k)

n ‖∞

Figures 4.4 and 4.5 show the decrease, respectively, of Λn and Dn as n increases. In
both cases, we use a semi-log scale. Also, consider the residual

R(k)
n = −∆u(k)

n − λ(k)
n u(k)

n

with the Laplacian ∆u
(k)
n computed analytically. Figures 4.6 and 4.7 show the

decrease of ‖R(k)
n ‖∞ and ‖R(k)

n ‖2, respectively, again on a semi-log scale. Note that
the L2-norm of the residual is significantly smaller than the maximum norm. When

looking at a graph of R
(k)
n , it is small over most of the region Ω, but it is more badly

behaved when (x, y) is near to the point on the boundary that is nearly an inverted
corner.
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Fig. 4.4. The values of
˛

˛

˛λ
(k)
n+1 − λ

(k)
n

˛

˛

˛ for k = 1, 2 for increasing degree n.

These numerical results all indicate an exponential rate of convergence for the

approximations
{
λ

(k)
n : n ≥ 1

}
and

{
u

(k)
n : n ≥ 1

}
as a function of the degree n. In

Figure 4.4, the maximum accuracy for λ(1) appears to have been found with the
degree n = 13, approximately. For larger degrees, rounding errors dominate. We
also see that the accuracy for the first eigenvalue-eigenfunction pair is better than
that for the second such pair. This pattern continues as the eigenvalues increase in
size, although a significant number of the leading eigenvalues remain fairly accurate,
enough for practical purposes. For example,

λ
(10)
16 − λ

(10)
15

.
= 2.55 × 10−7

∥∥∥u(10)
16 − u

(10)
15

∥∥∥
∞

.
= 1.49 × 10−4

We also give an example with a more badly behaved boundary, namely

ϕ (cos θ, sin θ) = (5 + sin θ + sin 3θ − cos 5θ) (cos θ, sin θ) , 0 ≤ θ ≤ 2π (4.5)

to which we refer as an ‘amoeba’ boundary. We create a function Φ : B2
1−1−→
onto

Ω; the

mapping is pictured in Figure 4.8 in the manner analogous to that done in Figure
4.1 for the limacon boundary. Both components of Φ (x, y) are polynomials in (x, y)
of degree 6. As discussed earlier, we defer to a future paper a discussion of the
construction of Φ; the method was different than that used for the limacon boundary
In Figure 4.9 we give an approximation to the eigenfunction corresponding to the
eigenvalue, λ(2) .

= 0.60086. The approximation uses a polynomial approximation of
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Fig. 4.5. The values of ‖u
(k)
n+1 − u

(k)
n ‖∞ for k = 1, 2 for increasing degree n.

degree n = 30. For it, we have

‖R(2)
30 ‖∞

.
= 0.730, ‖R(2)

30 ‖2
.
= 0.0255

4.2. Comparison using alternative trial functions. To ensure that our
method does not lead to poor convergence properties when compared to traditional
spectral methods, we compare in this section our use of polynomials over the unit disk
to some standard trial functions used with traditional spectral methods. We picked
two sets of trial functions that are presented in [11, §18.5].

The first choice is the shifted Chebyshev polynomials with a quadratic argument,

{
sin(mθ)Tj(2r

2 − 1), cos(mθ)Tj(2r
2 − 1), m even

sin(mθ)rTj(2r
2 − 1), cos(mθ)rTj(2r

2 − 1), m odd
j = 0, 1, . . . (4.6)

where m ∈ N0; the sine terms with m = 0 are omitted. These functions are not
smooth on the unit disk. Also, to ensure that the functions satisfy the boundary
condition for r = 1, we use

T̃E
j (r) ≡ Tj

(
2r2 − 1

)
− 1 and T̃O

j (r) ≡ rTj(2r
2 − 1) − r, j = 1, 2, . . .

instead of the radial functions given in (4.6). Because these functions are not polyno-
mials, the notion of degree does not make sense. To compare these functions to the
ridge polynomials we have to enumerate them so we can use the same number of trial
functions in our comparison. The result is a sequence of trial functions ϕ̃C

k , k ∈ N. If
k is even, we use a sine term; and if k is odd, we use a cosine term. Then we use a
triangular scheme to enumerate the function according to the following tables:

19



8 9 10 11 12 13 14 15 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

n

Residual for u(1)

Residual for u(2)

Fig. 4.6. The values of ‖R
(k)
n ‖∞ for k = 1, 2 for increasing degree n.

n odd

cos(0θ) T̃E
1 (r) (1) T̃E

2 (r) (3) T̃E
3 (r) (7) T̃E

4 (r) (13)

cos(1θ) T̃O
1 (r) (5) T̃O

2 (r) (9) T̃O
3 (r) (15) . . .

cos(2θ) T̃E
1 (r) (11) T̃E

2 (r) (17) . . .

cos(3θ) T̃O
1 (r) (19) . . .

n even

sin(1θ) T̃O
1 (r) (2) T̃O

2 (r) (4) T̃O
3 (r) (8) T̃O

4 (r) (14)

sin(2θ) T̃E
1 (r) (6) T̃E

2 (r) (10) T̃E
3 (r) (16) . . .

sin(3θ) T̃O
1 (r) (12) T̃O

2 (r) (18) . . .

sin(4θ) T̃E
1 (r) (20) . . .

The above table implies, for example,

ϕ̃C
15(θ, r) = cos(θ)T̃O

3 (r)

ϕ̃C
10(θ, r) = sin(2θ)T̃E

2 (r)

As a consequence of the triangular scheme, we use relatively more basis functions with
lower frequencies.

As a second set of trial functions, we chose the ‘one-sided Jacobi polynomials’,
given by

{
sin(mθ) rmP 0,m

j (2r2 − 1), m = 1, 2, . . . , j = 0, 1, . . .

cos(mθ) rmP 0,m
j (2r2 − 1), m = 0, 1, . . . , j = 0, 1, . . .

(4.7)

where the P 0,m
j are the Jacobi polynomials of degree j. These trial functions are

smooth on the unit disk; and in order to satisfy the boundary condition at r = 1, we
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Fig. 4.7. The values of ‖R
(k)
n ‖2 for k = 1, 2 for increasing degree n.

use

P̃ 0,m
j (r) := P 0,m

j (2r2 − 1) − 1, j = 1, 2, . . .

instead of the radial functions in (4.7). We use an enumeration scheme analogous to
that given in the above tables. The result is a sequence of trial functions ϕ̃J

k , k ∈ N.
For example

ϕ̃J
15(θ, r) = cos(θ) rP̃ 0,1

3 (r)

ϕ̃J
10(θ, r) = sin(2θ) rP̃ 0,2

2 (r)

When we compare the different trial functions in the following we always label the
horizontal axis with n, and this implies that Nn trial functions are used.

For our comparison, we used the same problem (4.2) with the region shown in
Figure 4.1. We have chosen to look at the convergence for the second eigenvalue
λ(2), and we plot errors for the eigenvalue itself and the norms of the residuals, ‖ −
∆u

(2)
n −λ(2)

n u
(2)
n ‖2 and ‖−∆u

(2)
n −λ(2)

n u
(2)
n ‖∞; see Figures 4.10–4.11. All three figures

show that for each set of trial functions the rate of convergence is exponential for this
example. Also in each figure the ridge and the one-sided Jacobi polynomials show a
faster convergence than the shifted Chebyshev polynomials. For the convergence of
the eigenvalue approximation there seems to be no clear difference between the ridge
and the one-sided Jacobi polynomials. For the norm of the residual the one-sided
Jacobi polynomials seem to be slightly better for larger n. The same tendency was
also visible for λ(1), but was not as clear. We conclude that the ridge polynomials are
a good choice.
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Fig. 4.8. An ‘amoeba’ region with boundary (4.5).

Because of the requirement of using polar coordinates for traditional spectral
methods and the resulting changes to the partial differential equation, we find that
the implementation is easier with our method. For a complete comparison, however,
we would need to look at the most efficient way to implement each method, including
comparing operation counts for the competing methods.

4.3. The three–dimensional Neumann problem. We illustrate our method
in R

3, doing so for the Neumann problem. We use two different domains. Let B3

denote the closed unit ball in R
3. The domain Ω1 = Φ1(B3) is given by

s = Φ1(x) ≡




x1 − 3x2

2x1 + x2

x1 + x2 + x3




so B3 is transformed to an ellipsoid Ω1; see Figure 4.13. The domain Ω2 is given by

Φ2




ρ
φ
θ


 =




(1 − t(ρ))ρ+ t(ρ)T (φ, θ)
φ
θ


 (4.8)

where we used spherical coordinates (ρ, φ, θ) ∈ [0, 1] × [0, 2π] × [0, π] to define the
mapping Φ2. Here the function T : S2 = ∂B3 7→ (1,∞) is a function which determines
the boundary of a star shaped domain Ω2. The restriction T (φ, θ) > 1 guarantees
that Φ2 is injective, and this can always be assumed after a suitable scaling of Ω2.
For our numerical example we use

T (θ, φ) = 2 +
3

4
cos(2φ) sin(θ)2(7 cos(θ)2 − 1)
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Fig. 4.9. Eigenfunction for the amoeba boundary corresponding to the approximate eigenvalue
λ(2) .

= 0.60086

Finally the function t is defined by

t(ρ) ≡
{

0, 0 ≤ ρ ≤ 1
2 ,

25(ρ− 1
2 )5, 1

2 < ρ ≤ 1.

where the exponent 5 implies Φ2 ∈ C4(B1(0)). See [6] for a more detailed description
of Φ2; one perspective of the surface Ω2 is shown in Figure 4.14.

For each domain we calculate the approximate eigenvalues λ
(i)
n , λ

(0)
n = 0 < λ

(1)
n ≤

λ
(2)
n ≤ . . . and eigenfunctions u

(i)
n , i = 1, . . . , Nn, for the degrees n = 1, . . . , 15 (here

we do not indicate dependence on the domain Ω). To analyze the convergence we
calculate several numbers. First we estimate the speed of convergence for the first

two eigenvalues by calculating |λ(i)
15 −λ

(i)
n |, i = 1, 2, n = 1, . . . , 14. Then to estimate the

speed of convergence of the eigenfunctions we calculate the angle (in L2(Ω)) between

the current approximation and the most accurate approximation ∠(u
(i)
n , u

(i)
15 ), i = 1, 2,

n = 1, . . . , 14. Finally, an independent estimate of the quality of our approximation
is given by

R(i)
n ≡ | − ∆u(i)

n (s) − λ(i)
n u(s)|

where we use only one s ∈ Ω, given by Φ(1/10, 1/10, 1/10). We approximate ∆u
(i)
n (s)

numerically as the analytic calculation of the second derivatives of u
(i)
n (s) is quite

complicated. To approximate the Laplace operator we use a second order difference
scheme with h = 0.0001 for Ω1 and h = 0.01 for Ω2. The reason for the latter choice
of h is that our approximations for the eigenfunctions on Ω2 are only accurate up
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Fig. 4.11. The residual ‖∆u
(2)
n + λ

(2)
n u

(2)
n ‖∞ for the three different sets of trial functions

three to four digits, so if we divide by h2 the discretization errors are magnified to
the order of 1.

The graphs in Figures 4.15–4.17, seem to indicate exponential convergence. For

the graphs of ∠(u
(i)
n , u

(i)
15 ), see Figure 4.16. We remark that we use the function

arccos(x) to calculate the angle, and for n ≈ 9 the numerical calculations give x = 1,

so the calculated angle becomes 0. For the approximation of R
(i)
n one has to remember
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Fig. 4.13. The boundary of Ω1

that we use a difference method of order O(h2) to approximate the Laplace operator,
so we can not expect any result better than 10−8 if we use h = 0.0001.

As we expect, the approximations for Ω2 with the transformation Φ2 present a
bigger problem for our method. Still from the graphs in Figure 4.18 and 4.19 we
might infer that the convergence is exponential, but with a smaller exponent than for
Ω1. Because Φ2 ∈ C4(B3) we know that the transformed eigenfunctions on B3 are
in general only C4, so we can only expect a convergence of O(n−4). The values of n
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15 − λ
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n

˛
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˛
for the calculation of the first two eigenvalues λ(i)

which we use are too small to show what we believe is the true behavior of the R
(i)
n ,

although the values for n = 10 . . . 14 seem to indicate some convergence of the type
we would expect.

The poorer convergence for Ω2 as compared to Ω1 illustrates a general problem.
When defining a surface ∂Ω by giving it as the image of a 1-1 mapping ϕ from the
unit sphere S2 into R

3, how does one extend it to a smooth mapping Φ from the unit
ball to Ω? The mapping in (4.8) is smooth, but it has large changes in its derivatives,
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˛
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and this affects the rate of convergence of our spectral method. As was discussed at
the beginning of this section, we are developing a toolkit of numerical methods for
generating such functions Φ. This will be developed in detail in a future paper.
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