ONE-DIMENSIONAL HEAT

EQUATION
Model PDE:
ou 02y
— =a——= 0 L O<t<T
Y aa$2—|—f, <x< L, O<t<K

supplemented by an initial condition

u(z,0) =uo(z), O0<z<L

and boundary conditions

u(0,t) = g1(%), u(L,t) =go(t), 0<t<T

The given data are: coefficient a > O, interval
lengths L > 0 and T > 0O, function f(x,t) for
O<zxz<Land 0 <t <T, function ug(x) for
0 <z <L, functions ¢g1(t) and ¢g»>(t) for 0 <t <
T.



T he differential equation, the initial and bound-
ary conditions together form an initial bound-

ary value problem.

~+

u=au +f
XX
u(0,t) = g, (v

u(Lb = g,()

© u(x,0) = uo(x)



NUMERICAL METHODS

Two approaches are possible in developing nu-
merical methods for the initial boundary value
problem.

In the first approach, the derivation of numer-
ical methods consists of two steps: step 1 is a
discretization of the spatial derivatives, leading
to a semi-discrete system, a system of ordi-
nary differential equations in the time variable;
in step 2, an ODE solver is employed to solve
the ODE system.

In the second approach, we discretize with re-
spect to both variables x and ¢t simultaneously,
and obtain fully discrete schemes that are ready
to be used and solved.

Numerical methods to be discussed:
Semi-discretization

Explicit full discretization

Implicit full discretization




SEMI-DISCRETIZATION

First introduce a partition of the spatial inter-
val [0,L]. We divide it into ng; equal parts,
and define grid size hy = L/n,; and grid points
x; = (1 —1)hg, 1 <i<nz+1. Let u;(¢t) be an
approximation of u(z;,t), 1 <i<ng-+ 1.

Then at an interior grid point z;, 2 <1 < ng,
we consider the differential equation and use
the three point central difference formula

82 u($i—|—17 t) — 2 u($i7 t) + ’U,($i_]_, t)

u
@(ﬂfia t) ~ h2

to do the approximation. Note that the three
point central difference is a second-order ap-
proximation of the second-derivative (i.e., the
approximation error is O(h%)), leading to a second-
order accurate method.




The result is the ODEs

ZEOREVIOR U TOIpIS
xr

for 2 < i < ng, where f;(t) = f(x;,t), and u;(t)

is the time derivative of u;(¢t). These equations

are to be supplemented by values of uq(¢t) and

uy,,+1(t) from the boundary conditions:

’U,z(t) = a

uy(t) = g1(t), up,4+1() = go(t)

and by the initial condition:

u;(0) = up(z;), 1<i<ng+1

The main advantage of this approach is that
state-of-the-art ODE solvers can be employed
to solve the resulting ODE system.



In matrix/vector notation, the ODE system
can be written as

u(t) = Au(t) + F(t)

u(0) = ug
where, u(t) = [us(t), - ,un,(t)]T is the vector
of unknowns,
S i
a 1 -2 1
A= — L e e,
hs 1 -2 1
i 1 =2 1 (ng—1)x(ng—1)

F(t) = | f20) + - 591(0), f3(0), -+
T
Pz 1(8): fa(8) + 5 292(0)

ug = [ug(@2), "+, ug(Tn, )"
The ODE system is increasingly stiffer as ng

increases. So it should be solved by an ODE
solver that is effective for stiff equations.



EXPLICIT FULL DISCRETIZATION

In addition to the partition of the spatial inter-
val [0, L] introduced earlier, we need a partition
of the time interval [0,T]. Let ns be a positive
integer. Then the time stepsize is hy = T /ny.
Denote tp, = (k—1)ht, 1 <k<ns+ 1, and by
uf the finite difference approximation value of
u(x;, tg).

Now discretize the differential equation at (z;, 1),

2< 1< ng 2<k<n:. Use
k k k
82u( 6 & Uit 1 — 2w +uy_4
axz Lyl ) ~ h%
ou ul-c_l_l —uk

1 1
0 hy

Then, we obtain the forward Euler formula

uf_i_l —uk ’U,,l]?_i_l —2uk—|—uf_1

- ? k
I . h2 t




It is convenient to introduce the ratio

aht

W—h—%

The complete description of the method, in-
corporating the initial and boundary conditions,
IS

uj = ug(z;), 1<i<ng+1
and for k >

1,

k+1

uf Tt =l + @ —29) uf +yub ) + hefh
2 < i< ng

k+1

k
ST =g1(tpy1), uit

T

L= go(the1)

For this method, once the approximate solu-
tion at ¢t = ¢, is known, we can compute the
solution at the next time level ¢ = ¢4 directly.
So the method is called an explicit method.
The main advantage of an explicit method is
that there is no need to solve linear systems, as
the approximate solution at time level ¢t =t
IS computed directly from that at the previous
time steps.



Stability and Convergence

Consider stability of the method with an anal-
ySis of error propagation through time advanc-
ing of the method. Suppose that the com-
puted solution at level t = t;, is @ = uf 4 €¥,
ef| < €¥, 1 <i<ng+ 1. Then, the computed
numerical solution (assuming no further error
is introduced) is

ﬂf—l—l k+1 4+ 671?_'_1

=ik + @ -2y @ +Aak g + hefh

Hence, for 2 <1 < ng,
k+1
6i+ = 7€§+1 + (1 —27) ¥ +yel 4

IS the error associated with the solution ﬂf"’l.
So if
aht 1

L =
h2 — 2

(1)

~
then for 2 <1 < ng,

k+1
T <Ak |4+ (@ —29) |ef| 4+ yleh_,| < &



i.e., the error is not amplified in time advancing
and the numerical method is stable. It can be
shown that (1) is actually both a necessary
and sufficient condition for the forward Euler
method to be stable.

Recall that the difference scheme is derived
with a second-order approximation (O(h2)) of

2
0~4(wi,ty,), and a first-order approximation (O(hy))

of Uz, 11,).

It can be proved that under the stability condi-
tion (1), if the true solution u has several con-
tinuous partial derivatives, the following error
bound holds:
L max (i, ty) — uf| = O(hs + h3)
1<k<n;+1
I.e., the scheme is of second-order accuracy in
hr and of first-order accuracy in hy.



Numerical Example

et us solve the following initial-boundary value
problem:

ur = ugz, x€(0,1), te (0,0.2)
u(x,0) =sin(wrz), =z € [0,1]
u(0,t) = u(1l,t) =0, t€][0,0.2]

The true solution is u(z,t) = e ™ tsin(xz),
shown in the following figure.

the true solution

t—axis



In this example, a =1, L =1, T' = 0.2. Then
ht = 0.2/n¢, hey = 1/ng. SO the stability condi-
tion (1) is

= 0.2n2

<

N |+~

nt

We choose n, = 3,6,12 and correspondingly
ny = 6,24,96 so that v = 0.3 and the stability
condition is satisfied. We list the maximum
errors maxy<j<n,+1 |u(zi, t) — uk| for t;, = 0.2
in the following table.

ne ng Max. Error
3 6 1.8414E—2
6 24 5.0829E-3
12 96 1.2573E-3

Observe that downward in the table, the max-
imum error is decreased by a factor around 4.



The numerical solution and the corresponding
error for n, = 12 and ny = 96 are shown in the
following figure.

Solution: ht:0.0021 hX:O.O833 Error: ht:0.0021 hX:0.0833

x10°

o o o
EAN (o)} 00] P~
The error

N

o
(V)

The numerical solution

t-axis 0 0 X—axis



To see the role played by the stability condi-
tion, we take other values of n; and n;. We
first take ny; = 10 and n; = 10. The results
are shown in the figure. In this case, the ratio
v = 2, and the scheme is not stable. How-
ever, since the difference scheme is applied
only 10 times (n; = 10), the accumulation of
the roundoff errors is not apparent.

Solution: ht=0.0200 hX=0.1OOO Error; ht=0.0200 hX=0.1000

DO 0.04,
003

0.02] /

The error

The numerical solution




To have a more dramatic illustration, take ny =
20 and n; = 20. The ratio is vy = 4. The re-
sults are shown in the figure. We observe that
the effect of roundoff error accumulation be-
comes rather evident for t close to its upper
bound 0.2.

Solution: ht=0.0100 hx=0.0500 Error: ht=0.0100 hX=O.0500

The numerical solution
The error

t-axis 0 0 X—axis t-axis 0 0 X—axis

This shows the importance of maintaining the
stability condition.



IMPLICIT FULL DISCRETIZATION

The main weakness of the explicit method is
the requirement of the stability condition, that
iImposes a restriction on the relative size of h;
with respect to hg:

Suppose the numerical solution corresponding
to the current values of hy and hy IS not accu-
rate enough. It is natural to try smaller values
for hy and hi. Assume we (nearly) double the
number of spatial grid points, hy = hgz/2. ToO
have the same value of the ratio ~v in order to
maintain the stability, we need to choose hy
such that

aﬁt_aht
hZ  h3
I.e.,
- 1
ht = —h
t A t

In other words, whenever h, is halved, hy must
be quartered. This may lead to the use of
prohibitively small time stepsize.



Does there exist a difference method that is
always stable?

et us keep the notations for the partitions of
the spatial and time intervals:

ht:T/’l’Lt, tk:(k_l)ht71§k§nt+l

Again, denote by uf the finite difference ap-
proximation value of u(x;, t;), and use the three
point central difference approximation
82w U§+1 —2uf +uf g
@($i7tk) ~ h%
for the second-order spatial derivative. For the

first-order time derivative, we use instead the
backward difference:

8u( £) uf —uf_l
- :U. %
YR k hy




The result is the backward Euler method

uk—ul.{_l 7,_I_]_—Q’U, —l—’U,z 1

? ? — k
h > + /i

for 2 <i < ng.

Again, denote the ratio v = ahi/h2. Then the
numerical scheme is

ul =ugp(a;), 1<i<ng+1
and for k > 2,
¢ —1
—yuf_y + @29 uf —yufyy = w4 ]
! 2 < i< ng
uf = g1(ty),  uk L = go(ty)

\

Unlike the explicit method, here for given ap-
proximate solution at ¢t = ¢t,_1, we need to
solve a linear system to find the approximate
solution at the next time level t = ¢;,. Such a
method is called an implicit method.



Implementation of Implicit Method

At each time level t = t;, £k > 2, we need to
solve a linear system:

AuF = FF

Here, the unknown vector u® = [uf,--- u
and the right-hand side vector

Fk [Ug_l + htf2 + ’Ygl(tk)aug_l _I_ htf37
up L hefE et by +792(tnx+1)]

The (ny —1) X (ng — 1) coefﬂcnent matrix

142y —y
-y 1+2y —y

k ]T’

-y 1+2y —v

-y 1427 ]
IS the same for any k. So we only need to com-
pute its LU factorization once which is stored
and used to solve the linear systems for all k.
Since A is tridiagonal, we can use the program
tridiag for its LU factorization.




Stability and Convergence

It can be shown that for any values of h, and
hy, error propagation with the time advancing
of the implicit method is well controlled. So
the implicit scheme is unconditionally stable.

Recall that the difference scheme is derived
with a second-order approximation (O(h2)) of

%(mi,tk), and a first-order approximation (O(h¢))

of %(:pi,tk). The following error bound can be
proved:
k 2
max Lt) —uw | = O(h h

1 <i<not-1 |’LL(£IZZ k) uz| ( t+ x)

1<k<ns;+1
l.e., the backward Euler method is second-
order accurate in space and first-order accu-
rate in time, provided the true solution u has
several continuous partial derivatives.



Numerical Example

Let us apply the backward Euler method to
solve the same initial-boundary value problem:
ur = uzz, x € (0,1), te€ (0,0.2)

u(x,0) =sin(rx), x € [0,1]
w(0,t) = u(1,t) =0, ¢tel0,0.2]

that was solved by the forward Euler method.

Recall that the true solution is

2
w(z,t) = e ™ tsin(nx)



Numerical results with (ng,n:) = (20,20) are
shown in the figure. We see that there is no
stability problem with the numerical solutions.

Solution: ht:0.0100 hX:O.OSOO Error: ht=0.0100 hx=0.0500

The numerical solution
The error




To have a closer look at the error behavior,
we give a table of the numerical solution errors
with n; = ny = 5 and the ratios of these so-
lution errors with those for several other pairs
of ny and n;. It is evident that as we double
both values of n; and ng, the errors are reduced
by factors approximately 2, indicating a linear
convergence behavior. When we double the
value of niy and quadruple the value of n¢, the
numerical solution errors are reduced by factors
nearly 4 (in the table, 3.82). If we quadruple
both ny and ng, the error reduction factors are
again close to 4 (in the table, 4.29). When
the starting values of ny and ny, are larger, the
ratios 3.82 and 4.29 given in the table will be
closer to 4. This phenomenon is consistent
with the theoretical result that the method is
of first order in hy and second order in hy.

x ng=2>5 ng=10 ny =20 ns =20
0.2 —-3.50E -2 2.09 3.82 4.29

0.4 —-5.66E -2 2.09 3.82 4.29




