CORRECTIONS TO Elementary Numerical Analysis

Page	Line	Change
11	Line 3 of Thm 1.2.1	denote the remainder or error in
20	Problem 17	Define $f(x) = \int_0^x e^{-t^2} dt$.
115	Problem 3	In the definition of $g(x)$, replace the term $h(x)$ in the denominator with $m h(x)$.
289	formula (6.75)	$ b_1 > c_1 > 0$ $ b_j \ge a_j + c_j , a_j, c_j \ne 0, j = 2, 3, \dots, n-1$ $ b_n > a_n > 0$
305	Line $k = 4$ of Table 6.2	Change entry "5.06E-2" to "5.04E-2"
338	Line 1 of Example 7.2.5	Change "Figure 7.2.1" to "Figure 7.6"
344	Line $m = 2$ of Table 7.4	Change entry " $-5.03E+0$ " to " $-5.02E+0$ "
361	Line 4 of Section 7.3.3	Change " (7.54) " to " (7.61) "
375	Line -7	$\frac{\partial f(x,z)}{\partial z} = -2z$
375	Line -6	$g(t) = -2Y(t) = -\frac{2}{t+1}$
381	Line -5	Change "0.001873" to "0.008731"
382	Line -5	\dots factors of 1.93 and 1.87. The reader \dots
385	Line 2 of Problem 1(e)	$Y(x) = (1 + \frac{1}{2}x^2)e^{-x}$
385	Problem 1(g)	$Y'(x) = (3x^{2} + 1)Y(x)^{2}, \qquad 0 \le x \le 10, Y(0) = -1;$ $Y(x) = -[x^{3} + x + 1]^{-1}$
388	Line -18	with the special case preceding
391	Line 5	Change "0.000818" to "0.000817"
392	Line $x = 1.0$ of Table 8.3	Change entry " $9.80E-3$ " to " $9.81E-3$ "
392	Line 2 of Example 8.3.4	\dots selected values of x . Note that \dots
395	Line 1	Then, subtracting (8.45) from the equation for
399	Line 6	Change "accurary" to "accuracy"
409	Table 8.9	Change the Euler Error entry 2.83E-3 to 2.83E-2
422	Line 1 of Problem 13	\dots particle of mass m falling vertically \dots
425	Line $x = 6$ of Table 8.17	Change entry "-0.67500371" to "0.68174279"
429	Line $x = 10$ of Table 8.20	Change entry " $-1.25E-4$ " to " $-1.275E-4$ "
429	Line 3 of Example 8.6.5	Change "Table 8.17" to "Table 8.20"
429	Line 5 of Example 8.6.5	Change "Table 8.17" to "Table 8.20"
432	Line 2 of Problem 4	the first step y_1 , use the Euler
439	Line 9 of Table 8.22	6 1.92034 $1.59E - 2$ $7.69E - 3$ 2.1 $8.17E - 3$
439	Line 11 of Table 8.22	10 -1.67814 1.26E - 3 9.44E - 4 1.3 3.11E - 4
444	Line 1	Change " (8.128) " to " (8.129) "

Page	Line	Change
449	Problem 6	Change the first four lines as follows:
		Verify that any function of the form $Y(x) = c_1 \sqrt{x} + c_2 x^4$
		satisfies the equation
		$x^{2}Y''(x) - \frac{7}{2}xY'(x) + 2Y(x) = 0$
		Determine the solution of the equation with the
		boundary conditions
		$Y(1)=1, \qquad Y(4)=2$
454	Line 4	$\frac{\partial^2 u}{\partial y^2}(x_i, y_j) = \frac{u(x_i, y_{j+1}) - 2u(x_i, y_j) + u(x_i, y_{j-1})}{h_y^2} + O(h_y^2)$
457	Line -10	n1 = n+1; h = 1/n;
457	Line -9	toln = (h^2)*tol;
458	Line 6	<pre>while ((rel_err>toln) & (itnum<=max_it))</pre>
464	Line 1 of Problem 3	Change x^3 to x^4
464	Line 3 of Problem 3	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 2x \left(x^3 - 6xy + 6xy^2 - 1 \right), 0 < x, y < 1$
464	Line -6	$\cdots 0 < x < 1$
464	Line -5	$\cdots 0 < y < 1$
468	Line 2 of Section 9.2.2	we need to choose a stepsize
476	Midpage	Change $\gamma g_2(t_{n_x+1})$ to $\gamma g_2(t_k)$
493	Line -1	Change "0.3777" to "0.3778"
495	Line -3	(a,b) and let $f(x)$ be continuous on $[a,b]$. Then
506	Top graph	Interchange the labels for $\sin^{-1}(x)$ and $\cos^{-1}(x)$ on the graph
511	Line -3	In addition, one can use
529	Line 10 of Example E.4	$2x_6 = 1.0 \qquad x_7 = 0 \qquad a_6 = 1$
544	Line 8 (in problem 7)	$MD(A \to U) = \frac{1}{2}n\left(n+1\right) - 1$
546	Line $x = 2$ of table in $2(c)$	Change "2.23E-2" to "2.23E-1"
546	Line -2	Use $K = 2 \max_{0 \le x \le b} 4Y(x) = 4$, for $b \ge 1$.
548	Line $x = 6$ of first table	Change " $2.70E-5$ " to " $2.55E-5$ "
549	Problem 2(a)	Append at the second line:
	, ,	y_1 and y_2 obtained using the RK method of order 2 with $\gamma_2 = 1$.