CORRECTIONS TO

Elementary Numerical Analysis

Page	Line	Change
11	Line 3 of Thm 1.2.1	\ldots denote the remainder or error in \ldots
20	Problem 17	Define $f(x)=\int_{0}^{x} e^{-t^{2}} d t$.
		In the definition of $g(x)$, replace the term $h(x)$ in the
115	Problem 3	denominator with $m h(x)$.
		$\left\|b_{1}\right\|>\left\|c_{1}\right\|>0$
	$\left\|b_{j}\right\| \geq\left\|a_{j}\right\|+\left\|c_{j}\right\|, \quad a_{j}, c_{j} \neq 0, \quad j=2,3, \ldots, n-1$	
289	formula (6.75)	$\left\|b_{n}\right\|>\left\|a_{n}\right\|>0$

Page	Line	Change
449	Problem 6	Change the first four lines as follows:
		Verify that any function of the form $Y(x)=c_{1} \sqrt{x}+c_{2} x^{4}$ satisfies the equation
		$x^{2} Y^{\prime \prime}(x)-\frac{7}{2} x Y^{\prime}(x)+2 Y(x)=0$
		Determine the solution of the equation with the boundary conditions
		$Y(1)=1, \quad Y(4)=2$
454	Line 4	$\frac{\partial^{2} u}{\partial y^{2}}\left(x_{i}, y_{j}\right)=\frac{u\left(x_{i}, y_{j+1}\right)-2 u\left(x_{i}, y_{j}\right)+u\left(x_{i}, y_{j-1}\right)}{h_{y}^{2}}+O\left(h_{y}^{2}\right)$
457	Line -10	n 1 l n l ; $\mathrm{h}=1 / \mathrm{n}$;
457	Line -9	toln $=\left(h^{\wedge} 2\right) *$ tol
458	Line 6	while ($($ rel_err>toln) \& (itnum<=max_it))
464	Line 1 of Problem 3	Change x^{3} to x^{4}
464	Line 3 of Problem 3	$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=2 x\left(x^{3}-6 x y+6 x y^{2}-1\right), \quad 0<x, y<1$
464	Line -6	$\cdots 0<x<1$
464	Line -5	$\cdots 0<y<1$
468	Line 2 of Section 9.2.2	... we need to choose a stepsize . .
476	Midpage	Change $\gamma g_{2}\left(t_{n_{x}+1}\right)$ to $\gamma g_{2}\left(t_{k}\right)$
493	Line -1	Change "0.3777" to "0.3778"
495	Line -3	(a, b) and let $f(x)$ be continuous on $[a, b]$. Then \ldots
506	Top graph	Interchange the labels for $\sin ^{-1}(x)$ and $\cos ^{-1}(x)$ on the graph
511	Line -3	\ldots. . In addition, one can use ...
529	Line 10 of Example E. 4	$2 x_{6}=1.0 \quad x_{7}=0 \quad a_{6}=1$
544	Line 8 (in problem 7)	$M D(A \rightarrow U)=\frac{1}{2} n(n+1)-1$
546	Line $x=2$ of table in 2(c)	Change "2.23E-2" to "2.23E-1"
546	Line -2	Use $K=2 \max _{0 \leq x \leq b}\|4 Y(x)\|=4, \quad$ for $b \geq 1$.
548	Line $x=6$ of first table	Change "2.70E-5" to "2.55E-5"
549	Problem 2(a)	Append at the second line:
		y_{1} and y_{2} obtained using the RK method of order 2 with $\gamma_{2}=1$.

