
A Spectral Method for the Biharmonic Equation

Kendall Atkinson, David Chien, and Olaf Hansen

Abstract Let Ω be an open, simply connected, and bounded region in R

d , d �

2, with a smooth boundary ∂Ω that is homeomorphic to S

d�1. Consider solving

∆ 2u+ γu = f over Ω with zero Dirichlet boundary conditions. A Galerkin method

based on a polynomial approximation space is proposed, yielding an approximation

un. With sufficiently smooth problem parameters, the method is shown to be rapidly

convergent. For u2C∞
�

Ω
�

and assuming ∂Ω is a C∞ boundary, the convergence of

ku�unkH2
(Ω)

to zero is faster than any power of 1=n. Numerical examples illustrate

experimentally an exponential rate of convergence.

1 Introduction

Consider the biharmonic problem

∆ 2u(s)+ γ (s)u(s) = f (s) ; s 2 Ω ; (1)

with the Dirichlet boundary conditions

u(s) =
∂u(s)

∂ns

= 0; s 2 ∂Ω : (2)

The region Ω �R

d , d � 2, is to be bounded and simply-connected; and its boundary

∂Ω is to be smooth and homeomorphic to Sd�1. Assume f 2 L2
(Ω) and
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γmin �min
s2Ω

γ (s)� 0: (3)

This can be looked upon as a problem in the Sobolev space H4
(Ω). It can also be

reformulated as a variational problem. For background on the use of this problem in

mechanics, see [12], [20, Chap. 8].

Introduce the bilinear functional

A (u;v) =

Z

Ω
[∆u(s)∆v(s)+ γ (s)u(s)v(s)℄ ds

and the linear functional

` f (v)� ( f ;v) =

Z

Ω
f (s)v(s) ds; v 2 L2

(Ω) :

Introduce the Hilbert space

H2
0 (Ω) =

�

v 2 H2
(Ω) j v;

∂v

∂n
= 0; on ∂Ω

�

:

For the norm, use

kvk2 � kvkH2
(Ω)

=

s

∑
jkj�2

kDkvk2
L2
(Ω)

;

where k =(k1; : : : ;kd) ; jkj= k1 + � � �+ kd , and

Dkv(s) =
∂ jkjv(s1; : : : ;sd)

∂ s
k1
1 � � �∂ s

kd

d

:

The variational formulation of (1)-(2) is to find u 2 H2
0 (Ω) for which

A (u;v) = ` f (v) ; 8v 2 H2
0 (Ω) : (4)

For a discussion of this reformulation, see Ciarlet [10, p. 28]. With the above as-

sumptions and definitions,A is a strongly elliptic operator on H2
0 (Ω),

A (v;v)� cekvk2
2; v 2 H2

0 (Ω) ;

with ce > 0. Also, A is a bounded bilinear operator,

jA (v;w)j � c
A

kvk2 kwk2 ; v;w 2 H2
0 (Ω) ;

for some finite c
A

> 0. Finally,

k` f k � k fkL2
(Ω)

:
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The Lax-Milgram Theorem (cf. [7, x8.3], [9, x2.7]) implies the existence of a unique

solution u to (4) with

kuk2 �
1

ce

k` f k: (5)

In x3 we present a Galerkin method for approximating (4), making use of mul-

tivariate orthonormal polynomial approximations. Numerical examples are given in

x4.

2 Preliminaries

Assume the existence of an explicitly known continuously differentiable mapping

Φ : B
d 1�1
�!

onto
Ω (6)

and let Ψ = Φ�1 : Ω
1�1
�!

onto
B

d
denote the inverse mapping. A very simple example

of such a mapping is when Ω is the ellipse

�s1

a

�2

+

�s2

b

�2

� 1

with a;b > 0. Choose

Φ (x) = (ax1;bx2) ; x 2 B 2
:

It is necessary to know Φ explicitly, but not Ψ .The creation of such a mapping Φ is

examined at length in [5].

Let

J (x)� (DΦ) (x) =

2

6

6

6

6

4

∂Φ1 (x)

∂x1

� � �

∂Φ1 (x)

∂xd
...

. . .
...

∂Φd (x)

∂x1

� � �

∂Φd (x)

∂xd

3

7

7

7

7

5

; x 2 B
d
; (7)

K (s)� (DΨ) (s) =

2

6

6

6

6

4

∂Ψ1 (s)

∂ s1

� � �

∂Ψ1 (s)

∂ sd
...

. . .
...

∂Ψd (s)

∂ s1

� � �

∂Ψd (s)

∂ sd

3

7

7

7

7

5

; s 2 Ω (8)

denote the Jacobian matrix of the transformations Φ and Ψ , respectively. Assume

J(x) is nonsingular on B
d
,

detJ(x) 6= 0; x 2 B
d
;
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and without loss of generality, assume

detJ(x)> 0; x 2 B
d
:

Differentiating the identity Φ (Ψ (s)) = s over Ω , or the identity Ψ (Φ (x)) = x over

B

d , leads to

J (x)K (s) = I; x =Ψ (s) ; (9)

Thus the components of K (s) can be obtained by using

K (s) = J (x)
�1

; s = Φ (x) : (10)

K (Φ(x)) = J (x)
�1

; x 2 B
d
: (11)

Let v denote a general function defined over Ω . For the transformation s = Φ (x),

introduce the notation ev(x) = v(Φ (x)); or equivalently, v(s) = ev(Ψ (s)) : Consider

the derivatives with respect to s of v(s). Let ∇s denote the gradient with respect to

the components of s; and do similarly for ∇x. Then

∇sv(s) = K (s)
T ∇xev(x) ; x =Ψ (s) ; (12)

∇xev(x) = J (x)
T ∇sv(s) ; s = Φ (x) ;

with ∇xev(x) the gradient of ev(x) written as a column vector, and analogously for

∇sv(s). Further derivatives are considered later in x3.1.

2.1 Approximation space

For Ω = B

d , introduce the approximation space

f

Xn =

�

�

1�jxj
2
�2

p(x) j p 2 Π d
n

�

;

where Π d
n denotes the space of all polynomials in d variables and of degree� n. For

general Ω , use the approximation space

Xn =

n

χ ÆΦ�1
j χ 2 f

Xn

o

:

Let Vk denote the space of all polynomials of degree k that are orthogonal in

L2
�

B

d
�

to all polynomials in Π d
k�1 using the standard inner product

( f ;g) =

Z

B

d
f (x)g(x) dx:

More precisely,
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Vk =

n

p 2 Π d
k j (p;q) = 0; 8q 2 Π d

k�1

o

; k = 1;2; : : : ;

and V0 is the set of all constant functions. Then

Π d
n = V0�V1��� ��Vn;

is an orthogonal decomposition of Π d
n within L2

�

B

d
�

. A basis for Π d
n is defined by

first defining a basis for each subspace Vk, k = 0;1; : : : ;n. Let
�

ϕk; j

	

be an orthonor-

mal basis of Vk, let Mk = dimVk, and define

χk; j (x) =
�

1�jxj
2
�2

ϕk; j (x) ; j = 1; : : : ;Mk:

Denote the corresponding basis for f

Xn by fχ
`

(x) j 1� `� Nng ;

Nn �M0 + � � �+Mn:

Let
�

ψ j j 1� j � Nn

	

be the corresponding basis forXn using ψ
`

= χ
`

ÆΦ�1. Note

that for d = 2,

Mn = n+1; Nn =
1
2
(n+1)(n+2) :

Orthonormal bases
�

ϕk; j

	

for Vk, k � 0, are considered in [2], [13], [22].

3 The numerical method

The numerical method is a Galerkin method for approximating (4): find un 2Xn for

which

A (un;v) = ( f ;v) ; 8v 2Xn:

This is the standard variational framework used with finite element methods, with

the approximating elements required to belong to H2
0 (Ω), a significant requirement.

Write

un (s) =
Nn

∑
j=1

α jψ j (s) :

Then the coefficients
�

α j

	

must satisfy the linear system

Nn

∑
j=1

α jA (ψ j;ψi) = ` f (ψi) ; i = 1; : : : ;Nn: (13)

The Lax-Milgram Theorem (cf. [7, x8.3], [9, x2.7], [10, p. 8]) implies the existence

of un for all n, with

kunk2 �
1

ce

k` fk:
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For the error in this Galerkin method, Cea’s Lemma (cf. [7, p. 371], [9, p. 62],

[10, p. 104]) implies the convergence of un to u, and moreover,

ku�unk2 �
c
A

ce

inf
v2Xn

ku� vk2: (14)

It remains to bound the best approximation error on the right side of this inequality.

The error analysis is similar to that given in the earlier papers [1], [4], [6].

To bound the right side, make use of the following connection between norms in

Hk
(Ω) and Hk

�

B

d
�

; the proof is omitted.

Lemma 1. Assume Φ 2 C∞
(Ω). Let v 2 Hk

(Ω) for some k � 0, k 2 N0 , and let

ev(x) = v(Φ (x)). Then

c1;k kevkHk
(

B

d
)

� kvkHk
(Ω)

� c2;k kevkHk
(

B

d
)

(15)

for some c1;k;c2;k > 0 independent of v.

In order to look at rates of convergence as a function of n, this lemma is used to

convert the bound (14) to the equivalent bound

keu� eunk2 � c inf
ev2 fXn

keu�evk2; (16)

c a generic constant dependent on Φ , but not on u. Assume u 2 Hk
0 (Ω), and equiv-

alently eu 2 Hk
0

�

B

d
�

, k � 2. Bounding the right side of (16) using [17, Thm 4.3]

leads to the error bound

keu� eunk2 �
c

nk�2
keuk

Hk
(

B

d
)

. (17)

Combined with Lemma 1 and (14),

ku�unk2 �
c

nk�2
kukHk

(Ω)

, (18)

again with c a generic constant. To obtain convergence for k = 2, it can be shown

that

inf
ev2 fXn

keu�evk2 ! 0 as n! ∞:

This follows because the polynomials [n�0
f

X nare dense in H2
0 (Ω) [note the com-

ments following [17, Thm 4.3] and the denseness of the polynomials [n�0Π d
n in

Hk
�

B

d
�

].

3.1 Evaluating the integrals

The integrals
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A (ψi;ψ j) =

Z

Ω
[∆ψi (s)∆ψ j (s)+ γ (s)ψi (s)ψ j (s)℄ ds (19)

must be computed. Begin by converting to an integral over B d .using the transforma-

tion s = Φ (x):

A (ψi;ψ j) =

Z

B

d

h

∆sψi (s)js=Φ(x) ∆sψ j (s)
�

�

s=Φ(x)

+γ (Φ (x))χi (x)χ j (x)℄detJ (x) dx:

The quantities ∆sψi (s), i = 1; : : : ;Nn, must be converted to functions involving

derivatives with respect to x for χi (x).

For the transformation x = Ψ (s), let v(s) = ev(Ψ (s)); or equivalently, ev(x) =

v(Φ (x)) : Look at the derivatives with respect to s of v(s). Then for i = 1; : : : ;d;

∂v(s)

∂ si

=

d

∑
j=1

∂ev(x)

∂x j

�

�

�

�

x=Ψ(s)

�

∂Ψj (s)

∂ si

=

�

∂Ψ1

∂ si

; : : : ;

∂Ψd

∂ si

�

∇xev(x) ; x =Ψ (s) :

This is a proof of (12). Next,

∂ 2v(s)

∂ s2
i

=

∂

∂ si

"

d

∑
j=1

∂ev (x)

∂x j

�

�

�

�

x=Ψ(s)

�

∂Ψj (s)

∂ si

#

=

d

∑
j=1

∂ev(x)

∂x j

�

�

�

�

x=Ψ (s)

�

∂ 2Ψj (s)

∂ s2
i

+

d

∑
j=1

∂Ψj (s)

∂ si

d

∑
k=1

∂ 2
ev(x)

∂x j∂xk

∂Ψk (s)

∂ si

:

Summing over i,

∆sv(s) =
d

∑
i; j=1

∂ev (x)

∂x j

�

�

�

�

x=Ψ(s)

�

∂ 2Ψj (s)

∂ s2
i

+

d

∑
i; j;k=1

∂Ψj (s)

∂ si

∂ 2
ev(x)

∂x j∂xk

∂Ψk (s)

∂ si

: (20)

Look at the terms in (20). First,

d

∑
i; j=1

∂ev(x)

∂x j

�

�

�

�

x=Ψ (s)

�

∂ 2Ψj (s)

∂ s2
i

=

d

∑
j=1

∂ev (x)

∂x j

∆sΨj (s)

= [∆sΨ1 (s) ; : : : ;∆sΨd (s)℄ ∇xev(x) : (21)



8 Kendall Atkinson, David Chien, and Olaf Hansen

Using the notation of (8),

d

∑
i; j;k=1

∂Ψj (s)

∂ si

∂ 2
ev(x)

∂x j∂xk

∂Ψk (s)

∂ si

=

d

∑
j;k=1

∂ 2
ev(x)

∂x j∂xk

d

∑
i=1

∂Ψj (s)

∂ si

∂Ψk (s)

∂ si

=

d

∑
j;k=1

∂ 2
ev(x)

∂x j∂xk

h

K (s) j;�

ih

K (s)k;�

iT

(22)

=

d

∑
j;k=1

∂ 2
ev(x)

∂x j∂xk

h

K (s)K (s)
T
i

j;k
:

Returning to (20) and combining terms,

∆sv(s) = [∆sΨ1 (s) ; : : : ;∆sΨd (s)℄ ∇xev (x)

+

d

∑
j;k=1

∂ 2
ev(x)

∂x j∂xk

h

K (s) j;�

ih

K (s)k;�

iT

: (23)

Formula (22) can be evaluated from knowing J (x); see (10) above. The formula

(23) is to be evaluated with

ev(x) = χ
`

(x) ; 1� `� Nn;

so as to create the elementsA (ψi;ψ j).

To evaluate (21), we need ∆sΨj (s), 1 � j � d. The first derivatives of 6Ψ can be

obtained from DsΨ (s) = [DxΦ (x)℄
�1

where s = Φ (x). How to obtain the functions

∆sΨj (s)? Begin by differentiating

s = Φ (Ψ (s)) ; s 2Ω ;

or

s j = Φ j (Ψ1 (s) ; : : : ;Ψd (s)) ; 1� j � d:

The derivative with respect to si yields

δi; j =

d

∑
k=1

∂Φ j (x)

∂xk

�

�

�

�

x=Ψ(s)

�

∂Ψk (s)

∂ si

; 1� i; j � d: (24)

Differentiate the components of (9), given in (24), with respect to s
`

: for 1� i; j; `�

d,

0 =

d

∑
k=1

∂Φ j (x)

∂xk

∂ 2Ψk (s)

∂ si∂ s
`

+

d

∑
k=1

∂Ψk (s)

∂ si

d

∑
m=1

∂ 2Φ j (x)

∂xk∂xm

∂Ψm (s)

∂ s
`

:

Let `= i;
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0 =

d

∑
k=1

∂Φ j (x)

∂xk

∂ 2Ψk (s)

∂ s2
i

+

d

∑
k=1

∂Ψk (s)

∂ si

d

∑
m=1

∂ 2Φ j (x)

∂xk∂xm

∂Ψm (s)

∂ si

;

=

d

∑
k=1

∂Φ j (x)

∂xk

∂ 2Ψk (s)

∂ s2
i

+

d

∑
k;m=1

∂ 2Φ j (x)

∂xk∂xm

∂Ψk (s)

∂ si

∂Ψm (s)

∂ si

:

Sum over i: for 1� j � d,

0 =

d

∑
k=1

∂Φ j (x)

∂xk

∆sΨk (s)+
d

∑
k;m=1

∂ 2Φ j (x)

∂xk∂xm

d

∑
i=1

∂Ψk (s)

∂ si

∂Ψm (s)

∂ si

=

d

∑
k=1

∂Φ j (x)

∂xk

∆sΨk (s)+
d

∑
k;m=1

∂ 2Φ j (x)

∂xk∂xm

h

K (s)k;�

ih

K (s)m;�

iT

(25)

=

d

∑
k=1

∂Φ j (x)

∂xk

∆sΨk (s)+
d

∑
k;m=1

∂ 2Φ j (x)

∂xk∂xm

h

K (s)K (s)
T
i

k;m
:

Introduce

∆sΨ (s) = [∆sΨ1 (s) ; : : : ;∆sΨd (s)℄
T
;

D2Φ j (x) =

2

6

6

6

6

6

4

∂ 2Φ j (x)

∂x1∂x1

� � �

∂ 2Φ j (x)

∂x1∂xd
...

. . .
...

∂ 2Φ j (x)

∂xd∂x1

� � �

∂ 2Φ j (x)

∂xd∂xd

3

7

7

7

7

7

5

; 1� j � d:

Introduce the dot product of two arrays of the same dimension:

A�B = ∑
i; j

Ai; jBi; j:

Then (25) can be written as

0 =

h

J (x) j;�

i

[∆sΨ (s)℄+D2Φ j (x)�
h

K (s)K (s)
T
i

:

From (25),

0 = J (x)∆sΨ (s)+

2

6

6

6

4

D2Φ1 (x)�
h

K (s)K (s)
T
i

...

D2Φd (x)�
h

K (s)K (s)
T
i

3

7

7

7

5

� J (x)∆sΨ (s)+D2Φ (x)�
h

K (s)
T

K (s)
i

:

which contains an implicit definition of D2Φ and an implicit notational extension

of the operation�. Then
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∆sΨ (s) =�J (x)
�1
n

D

2Φ (x)�

h

K (s)K (s)
T
io

;

and recall (10) to compute K (s).

This allows computing the coefficientsA (ψi;ψ j) of (13) by means of the change

of variables s = Φ (x). Rewrite (23) as

∆sv(s) = [∆sΨ (s)℄
T ∇xev(x)+D2

ev(x)�
h

K (s)K (s)
T
i

: (26)

Returning to A (ψi;ψ j), apply (26) with

ev(x) = χn; j (x) =
�

1�jxj
2
�2

ϕn; j (x)

=

�

1� x2
1��� �� x2

d

�2
ϕn; j (x)

for 1� j �Mk, 0� k � n.

We need to find the first and second order derivatives of χn; j (x), and thus also of

ϕn; j (x).

∂ χn; j (x)

∂xk

=�4xk

�

1� x2
1��� �� x2

d

�

ϕn; j (x)+
�

1�jxj
2
�2 ∂ϕn; j (x)

∂xk

;

∂ 2χn; j (x)

∂x2
k

=

�

�4
�

1� x2
1��� �� x2

d

�

+8x2
k

	

ϕn; j (x)

�8xk

�

1� x2
1��� �� x2

d

� ∂ϕn; j (x)

∂xk

+

�

1�jxj
2
�2 ∂ 2ϕn; j (x)

∂x2
k

:

For ` 6= k,

∂ 2χn; j (x)

∂xk∂x
`

= 8xkx
`

ϕn; j (x)

�4
�

1� x2
1��� �� x2

d

�

�

xk

∂ϕn; j (x)

∂x
`

+ x
`

∂ϕn; j (x)

∂xk

�

+

�

1�jxj
2
�2 ∂ 2ϕn; j (x)

∂xk∂x
`

:

These can be combined with (26) to compute ∆sχ j and thus to computeA (ψi;ψ j)

for 1� i; j � Nn.

The next step is to look at particular orthonormal polynomials
�

ϕn; j (x)
	

and to

compute
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ϕn; j; 1� j �Mn;

∂ϕn; j (x)

∂xk

;

1� j �Mn

1� k � d
;

∂ 2ϕn; j (x)

∂xk∂x
`

;

1� j �Mn

1� k; `� d
:

The best choice as regards speed of calculation is to use the polynomials discussed

in [2], as they satisfy a triple recursion that allows for a rapid calculation. For the

planar case, these are given by

ϕn;k (x) =
1

hk;n

Ck+1
n�k (x1)

�

1� x2
1

�

k
2 C

1
2
k

0

�

x2
q

1� x2
1

1

A

; x 2 B 2
; (27)

for k = 0; : : : ;n; n = 0;1; : : : The quantity Cλ
m (t) ; m � 0, denotes the Gegenbauer

polynomial of degree m and index λ .

For the three dimensional case, we use the polynomials

ϕn; j;k(x) =
1

h j;k

C
j+k+3=2

n� j�k (x1)(1� x2
1)

j=2
: : :

�Ck+1
j (

x2
q

1� x2
1

)(1� x2
1� x2

2)
k=2C

1=2

k (

x3
q

1� x2
1� x2

2

);

x 2 B 3
; 0� j+ k � n; n = 0;1; : : : (28)

which uses again the Gegenbauer polynomials. The numbers h j;k are normalization

constants, see [13], and see [2] for the triple recursion.

4 Numerical Examples

4.1 Planar Examples

Our first examples are for Ω a planar region, and thus Φ : B 2
!Ω .

Example 1. Begin with the elliptical region Ω defined by the mapping s = Φ (x),

x 2 B 2 ,

s1 = 2x1 + x2

s2 = 3x1�4x2: (29)

Choose

f (s) = 10 cos(s1�0:1) sin(s2 +0:1) (30)
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Fig. 1 Solution u with f given by (30), γ (s)� 1, and the region (29)
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Fig. 2 Computed error in un with f given by (30) and γ (s)� 1.
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Fig. 3 logn vs. log(cond), with cond the condition number of (13), with the region (29)

and γ (s) � 1 over Ω . The solution is shown in Figure 1. The true solution is un-

known, so the error is estimated by using un� as the ’true’ solution with n� much

larger than n being used. In the present case, n� = 20 was used. The maximum er-

rors are shown in Figure 2, and it appears to be an exponential decrease in the error.

Figure 3 is a graph of logn vs. log(cond), with cond the condition number of (13).

It indicates that the condition number is O (np
) for some power p; experimentally

and roughly, p� 4:5, and p = 4 seems most likely to be the theoretical power. That

would be consistent with the condition number being O
�

N2
n

�

, as was observed ear-

lier with the spectral method for the Neumann boundary value problem for second

order equations.

Example 2. Consider the boundary mapping

ϕ (θ ) = ρ (θ )(cosθ ;sinθ ) ;
ρ (θ ) = 3+ cosθ +2sinθ ; 0� θ � 2π :

(31)

This can be extended to a polynomial mapping of degree 2 in various ways, as

discussed in [5], and one such mapping is illustrated in Figure 4. This mapping Φ is

obtained using (1) the interpolation/quadrature method of x3 in [5], followed by (2)

computing the least squares polynomial approximation over B 2 of degree 2 in each

component.

The equation (1) is solved with the same choices for γ and f as in Example

1. Figure 5 illustrates the solution, using u20. The errors are shown in Figure 6.
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Fig. 5 Solution u with f given by (30), γ (s)� 1, and ∂ Ω given by (31)
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Fig. 6 Computed error in un with f given by (30), γ (s) � 1, and the boundary mapping (31)

The condition numbers, shown in Figure 7, appear to increase like O
�

N2
n

�

, as with

Example 1.

Example 3. Consider the mapping

Φ1 (x) =
�

x1� x2 +ax2
1; x1 + x2

�T
; x 2 B

2
; (32)

for a given 0 < a < 1, with the image defining Ω . In addition, use the interpola-

tion/quadrature method of x3 in [5] to create another mapping Φ2 that agrees with

Φ1 on the boundary of B 2 . These mappings are illustrated in Figure 8. Clearly Φ2 is

a ‘better behaved’ mapping as compared to Φ1. We solve ∆ 2u+ γu = f as before,

but now let

f (s) = 200cos(st)sin(t +0:1) : (33)

The solution is shown in Figure 9. The maximum errors are shown in Figure 10, and

there appears to be an exponential decrease in the error. The condition numbers are

shown in Figure 11, and again they appear to increase like O
�

N2
n

�

.

4.2 A three dimensional example

Example 4. Here we consider the case of an ellipsoid
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Fig. 7 logn vs. log(cond), with cond the condition number of (13), with the boundary mapping

(31).
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Fig. 8 The mapping Φ for boundary (32) with a=0.95
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Fig. 9 Solution u with f given by (33), γ (s)� 1, and ∂ Ω given by (32)
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Fig. 10 Computed error in un with f given by (33), for the mappings Φ1 and Φ2 with the boundary

specified by (32).
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Fig. 11 logn vs. log(cond), with cond the condition number of (13), for the mappings Φ1 and Φ2

with the boundary specified by (32).

Ω = f(s1;s2;s3) j s
2
1 +

�s2

3

�2

+

�s3

2

�2

� 1g (34)

with the obvious mapping

Φ(x1;x2;x3) = [x1;3x2;2x3℄; [x1;x2;x3℄ 2 B
3
: (35)

We solve equation (1) with γ(s) � 1 and calculate the right hand side f1 in such a

way that the solution of (1) is given by

u(s1;s2;s3) =

�

1� s2
1�

�s2

3

�2

�

�s3

2

�2
�2

e3(s1+s2=3+s3=2)
: (36)

To study the influence of faster growing derivatives we use a second right hand side

f2 on the same domain Ω , such that the solution is given

v(s1;s2;s3) =

�

1� s2
1�

�s2

3

�2

�

�s3

2

�2
�2

e7(s1+s2=3+s3=2)
: (37)

We expect slower but still exponential convergence for the second example. This is

confirmed in the numerical calculation, see Figure 12, where the maximum errors

are plotted versus n. The error graph for the solution u shows some saturation around

n = 22, because we reach the precision limit of the Gauß–quadratures that we use

for the evaluation of the integrals in equation (13). The graph of log(cond) versus
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Fig. 12 Computed error in un and vn, for the solutions u and v given in (36) and (37).

logn in Figure 13 shows again a polynomial behavior. From the numerical results

we estimate a condition number of O
�

N2
n

�

, where we remember that Nn =O(n3
).

5 Nonhomogeneous boundary conditions

Consider the Dirichlet biharmonic problem

∆ 2u(s)+ γ (s)u(s) = f (s) ; s 2 Ω ;

u(s) = g1 (s) ;
∂u(s)

∂ns

= g2 (s) ; s 2 ∂Ω :

(38)

This can be reduced to two simpler problems. Consider first the standard Dirichlet

biharmonic problem

∆ 2w(s) = 0; s 2 Ω ;

w(s) = g1 (s) ;
∂w(s)

∂ns

= g2 (s) ; s 2 ∂Ω :

(39)

Define v = u�w. Then v satisfies
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Fig. 13 logn vs. log(cond), with cond the condition number of (13), with γ(s) � 1, and the map-

ping (35) for the domain (34).

∆ 2v(s)+ γ (s)v(s) = f (s)� γ (s)w(s)� ef (s) ; s 2 Ω ;

v(s) =
∂v(s)

∂ns

= 0; s 2 ∂Ω :

(40)

Begin by solving (39) numerically, obtaining an approximating solution

bw (s) � w(s) : Then solve (40) with bw(s) replacing w(s) in the definition of ef (s).

The problem (40) can be solved using the methods given earlier in this paper. Solve

for an approximating solution vn (s)� v(s), and then define

bu(s) = vn (s)+ bw(s) ; s 2 Ω ;

as the approximating solution of (38).

To solve (39), a number of methods have been proposed, often using boundary

integral equation reformulations. For a review of some of these, see [14, Chaps.

9,15], [15], [16].

Remark. The eigenvalue problem for the biharmonic equation (1)-(2) is discussed

and illustrated in the book [3, Chap. 9].

Traditional spectral methods use univariate approximations with a decomposition

of the partial differential equation into univariate problems. Consider, for example,

using a polar coordinates decomposition of the unit disk. But this leads to problems

when treating the solution u at the center of the disk. The present spectral method

makes use of the recently developed theory and tools for multivariate approximation
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over B d , avoiding artificial problems that can occur when using univariate approxi-

mations.
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